Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Ovarian Cancer | Research

FBXO28 promotes cell proliferation, migration and invasion via upregulation of the TGF-beta1/SMAD2/3 signaling pathway in ovarian cancer

Authors: Gendi Song, Zhengwei Sun, Man Chu, Zihan Zhang, Jiajia Chen, Zhiwei Wang, Xueqiong Zhu

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Ovarian cancer is one of the most common gynecological malignancies due to the lack of early symptoms, early diagnosis and limited screening. Therefore, it is necessary to understand the molecular mechanism underlying the occurrence and progression of ovarian cancer and to identify a basic biomarker for the early diagnosis and clinical treatment of ovarian cancer.

Methods

The association between FBXO28 and ovarian cancer prognosis was analyzed using Kaplan‒Meier survival analysis. The difference in FBXO28 mRNA expression between normal ovarian tissues and ovarian tumor tissues was obtained from The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) cohorts. The expression levels of the FBXO28 protein in ovarian cancer tissues and normal ovarian tissues were measured via immunohistochemical staining. Western blotting was used to determine the level of FBXO28 expression in ovarian cancer cells. The CCK-8, the colony formation, Transwell migration and invasion assays were performed to evaluate cell proliferation and motility.

Results

We found that a higher expression level of FBXO28 was associated with poor prognosis in ovarian cancer patients. Analysis of the TCGA and GTEx cohorts showed that the FBXO28 mRNA level was lower in normal ovarian tissue samples than in ovarian cancer tissue samples. Compared with that in normal ovarian tissues or cell lines, the expression of FBXO28 was greater in ovarian tumor tissues or tumor cells. The upregulation of FBXO28 promoted the viability, proliferation, migration and invasion of ovarian cancer cells. Finally, we demonstrated that FBXO28 activated the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.

Conclusions

In conclusion, FBXO28 enhanced oncogenic function via upregulation of the TGF-beta1/Smad2/3 signaling pathway in ovarian cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75.PubMedCrossRefPubMedCentral Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75.PubMedCrossRefPubMedCentral
2.
go back to reference Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian Cancer: a heterogeneous disease. Pathobiology. 2018;85(1–2):41–9.PubMedCrossRef Kossai M, Leary A, Scoazec JY, Genestie C. Ovarian Cancer: a heterogeneous disease. Pathobiology. 2018;85(1–2):41–9.PubMedCrossRef
3.
go back to reference Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.PubMedCrossRefPubMedCentral Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96.PubMedCrossRefPubMedCentral
5.
go back to reference Au KK, Josahkian JA, Francis JA, Squire JA, Koti M. Current state of biomarkers in ovarian cancer prognosis. Future Oncol. 2015;11(23):3187–95.PubMedCrossRef Au KK, Josahkian JA, Francis JA, Squire JA, Koti M. Current state of biomarkers in ovarian cancer prognosis. Future Oncol. 2015;11(23):3187–95.PubMedCrossRef
6.
go back to reference Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian Cancer Prevention and Screening. Obstet Gynecol. 2018;131(5):909–27.PubMedCrossRef Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian Cancer Prevention and Screening. Obstet Gynecol. 2018;131(5):909–27.PubMedCrossRef
9.
go back to reference Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol. 2018;51:160–9.PubMedCrossRef Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol. 2018;51:160–9.PubMedCrossRef
11.
go back to reference Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol. 2016;36:3–17.PubMedCrossRef Randle SJ, Laman H. F-box protein interactions with the hallmark pathways in cancer. Semin Cancer Biol. 2016;36:3–17.PubMedCrossRef
12.
go back to reference Lin M, Zhang J, Bouamar H, Wang Z, Sun LZ, Zhu X. Fbxo22 promotes cervical cancer progression via targeting p57(Kip2) for ubiquitination and degradation. Cell Death Dis. 2022;13(9):805.PubMedCrossRefPubMedCentral Lin M, Zhang J, Bouamar H, Wang Z, Sun LZ, Zhu X. Fbxo22 promotes cervical cancer progression via targeting p57(Kip2) for ubiquitination and degradation. Cell Death Dis. 2022;13(9):805.PubMedCrossRefPubMedCentral
13.
go back to reference Wang Q, Wu L, Cao R, Gao J, Chai D, Qin Y, Ma L, Wu S, Tao Y, Ma J, et al. Fbxo45 promotes the malignant development of esophageal squamous cell carcinoma by targeting GGNBP2 for ubiquitination and degradation. Oncogene. 2022;41(43):4795–807.PubMedCrossRef Wang Q, Wu L, Cao R, Gao J, Chai D, Qin Y, Ma L, Wu S, Tao Y, Ma J, et al. Fbxo45 promotes the malignant development of esophageal squamous cell carcinoma by targeting GGNBP2 for ubiquitination and degradation. Oncogene. 2022;41(43):4795–807.PubMedCrossRef
14.
go back to reference Wu L, Yu K, Chen K, Zhu X, Yang Z, Wang Q, Gao J, Wang Y, Cao T, Xu H, et al. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis. 2022;13(3):231.PubMedCrossRefPubMedCentral Wu L, Yu K, Chen K, Zhu X, Yang Z, Wang Q, Gao J, Wang Y, Cao T, Xu H, et al. Fbxo45 facilitates pancreatic carcinoma progression by targeting USP49 for ubiquitination and degradation. Cell Death Dis. 2022;13(3):231.PubMedCrossRefPubMedCentral
15.
go back to reference Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat. 2020;49:100673.PubMedCrossRef Yan L, Lin M, Pan S, Assaraf YG, Wang ZW, Zhu X. Emerging roles of F-box proteins in cancer drug resistance. Drug Resist Updat. 2020;49:100673.PubMedCrossRef
16.
go back to reference Phillips E, Balss J, Bethke F, Pusch S, Christen S, Hielscher T, Schnölzer M, Fletcher MNC, Habel A, Tessmer C, et al. PFKFB4 interacts with FBXO28 to promote HIF-1α signaling in glioblastoma. Oncogenesis. 2022;11(1):57.PubMedCrossRefPubMedCentral Phillips E, Balss J, Bethke F, Pusch S, Christen S, Hielscher T, Schnölzer M, Fletcher MNC, Habel A, Tessmer C, et al. PFKFB4 interacts with FBXO28 to promote HIF-1α signaling in glioblastoma. Oncogenesis. 2022;11(1):57.PubMedCrossRefPubMedCentral
17.
go back to reference Gorrepati KDD, He W, Lupse B, Yuan T, Maedler K, Ardestani A. An SCFFBXO28 E3 ligase protects pancreatic β-Cells from apoptosis. Int J Mol Sci 2018, 19(4). Gorrepati KDD, He W, Lupse B, Yuan T, Maedler K, Ardestani A. An SCFFBXO28 E3 ligase protects pancreatic β-Cells from apoptosis. Int J Mol Sci 2018, 19(4).
18.
go back to reference Cepeda D, Ng H-F, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E, Magnusson K, Nilsson H, Malyukova A, Rantala J, et al. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med. 2013;5(7):1067–86.PubMedCrossRef Cepeda D, Ng H-F, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E, Magnusson K, Nilsson H, Malyukova A, Rantala J, et al. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med. 2013;5(7):1067–86.PubMedCrossRef
20.
go back to reference Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-beta signaling: a recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol. 2022;237(1):59–85.PubMedCrossRef Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-beta signaling: a recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol. 2022;237(1):59–85.PubMedCrossRef
21.
go back to reference Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-beta signaling pathway: therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol. 2023;947:175678.PubMedCrossRef Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-beta signaling pathway: therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol. 2023;947:175678.PubMedCrossRef
22.
go back to reference Hata A, Chen Y-G. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 2016, 8(9). Hata A, Chen Y-G. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 2016, 8(9).
23.
go back to reference Luo F, Huang Y, Li Y, Zhao X, Xie Y, Zhang Q, Mei J, Liu X. A narrative review of the relationship between TGF-beta signaling and gynecological malignant tumor. Ann Transl Med. 2021;9(20):1601.PubMedCrossRefPubMedCentral Luo F, Huang Y, Li Y, Zhao X, Xie Y, Zhang Q, Mei J, Liu X. A narrative review of the relationship between TGF-beta signaling and gynecological malignant tumor. Ann Transl Med. 2021;9(20):1601.PubMedCrossRefPubMedCentral
24.
go back to reference Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ, Mok SC. TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013;73(16):5016–28.PubMedCrossRefPubMedCentral Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, Zaid TM, Ghosh S, Birrer MJ, Mok SC. TGF-beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013;73(16):5016–28.PubMedCrossRefPubMedCentral
25.
go back to reference Guo Y, Cui W, Pei Y, Xu D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-beta signaling pathway. Gynecol Oncol. 2019;153(3):639–50.PubMedCrossRef Guo Y, Cui W, Pei Y, Xu D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-beta signaling pathway. Gynecol Oncol. 2019;153(3):639–50.PubMedCrossRef
26.
go back to reference Liang Q, Xu Z, Liu Y, Peng B, Cai Y, Liu W, Yan Y. NR2F1 Regulates TGF-β1-Mediated Epithelial-Mesenchymal Transition Affecting Platinum Sensitivity and Immune Response in Ovarian Cancer. Cancers (Basel) 2022, 14(19). Liang Q, Xu Z, Liu Y, Peng B, Cai Y, Liu W, Yan Y. NR2F1 Regulates TGF-β1-Mediated Epithelial-Mesenchymal Transition Affecting Platinum Sensitivity and Immune Response in Ovarian Cancer. Cancers (Basel) 2022, 14(19).
27.
go back to reference Lu E, Hu X, Pan C, Chen J, Xu Y, Zhu X. Up-regulation of peroxiredoxin-1 promotes cell proliferation and metastasis and inhibits apoptosis in cervical cancer. J Cancer. 2020;11(5):1170–81.PubMedCrossRefPubMedCentral Lu E, Hu X, Pan C, Chen J, Xu Y, Zhu X. Up-regulation of peroxiredoxin-1 promotes cell proliferation and metastasis and inhibits apoptosis in cervical cancer. J Cancer. 2020;11(5):1170–81.PubMedCrossRefPubMedCentral
28.
go back to reference Huang M, Fu M, Wang J, Xia C, Zhang H, Xiong Y, He J, Liu J, Liu B, Pan S, et al. TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α. Biochem Pharmacol. 2021;188:114527.PubMedCrossRef Huang M, Fu M, Wang J, Xia C, Zhang H, Xiong Y, He J, Liu J, Liu B, Pan S, et al. TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α. Biochem Pharmacol. 2021;188:114527.PubMedCrossRef
29.
go back to reference Xue Q, Jiang H, Wang J, Wei D. LASP1 Induces Epithelial-Mesenchymal Transition in Lung Cancer through the TGF-β1/Smad/Snail Pathway. Can Respir J 2021, 2021:5277409. Xue Q, Jiang H, Wang J, Wei D. LASP1 Induces Epithelial-Mesenchymal Transition in Lung Cancer through the TGF-β1/Smad/Snail Pathway. Can Respir J 2021, 2021:5277409.
30.
go back to reference Xie F, Liu J, Li C, Zhao Y. Simvastatin blocks TGF-β1-induced epithelial-mesenchymal transition in human prostate cancer cells. Oncol Lett. 2016;11(5):3377–83.PubMedCrossRefPubMedCentral Xie F, Liu J, Li C, Zhao Y. Simvastatin blocks TGF-β1-induced epithelial-mesenchymal transition in human prostate cancer cells. Oncol Lett. 2016;11(5):3377–83.PubMedCrossRefPubMedCentral
31.
go back to reference Schneider AL, Myers CT, Muir AM, Calvert S, Basinger A, Perry MS, Rodan L, Helbig KL, Chambers C, Gorman KM, et al. FBXO28 causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia. 2021;62(1):e13–e21.PubMedCrossRef Schneider AL, Myers CT, Muir AM, Calvert S, Basinger A, Perry MS, Rodan L, Helbig KL, Chambers C, Gorman KM, et al. FBXO28 causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia. 2021;62(1):e13–e21.PubMedCrossRef
32.
go back to reference Kratz A-S, Richter KT, Schlosser YT, Schmitt M, Shumilov A, Delecluse H-J, Hoffmann I. Fbxo28 promotes mitotic progression and regulates topoisomerase IIα-dependent DNA decatenation. Cell Cycle. 2016;15(24):3419–31.PubMedCrossRefPubMedCentral Kratz A-S, Richter KT, Schlosser YT, Schmitt M, Shumilov A, Delecluse H-J, Hoffmann I. Fbxo28 promotes mitotic progression and regulates topoisomerase IIα-dependent DNA decatenation. Cell Cycle. 2016;15(24):3419–31.PubMedCrossRefPubMedCentral
33.
go back to reference Yu T, Wang L, Zhao C, Qian B, Yao C, He F, Zhu Y, Cai M, Li M, Zhao D, et al. Sublytic C5b-9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med. 2019;23(8):5654–71.PubMedCrossRefPubMedCentral Yu T, Wang L, Zhao C, Qian B, Yao C, He F, Zhu Y, Cai M, Li M, Zhao D, et al. Sublytic C5b-9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med. 2019;23(8):5654–71.PubMedCrossRefPubMedCentral
34.
go back to reference Cai L, Liu L, Li L, Jia L. SCF(FBXO28)-mediated self-ubiquitination of FBXO28 promotes its degradation. Cell Signal. 2020;65:109440.PubMedCrossRef Cai L, Liu L, Li L, Jia L. SCF(FBXO28)-mediated self-ubiquitination of FBXO28 promotes its degradation. Cell Signal. 2020;65:109440.PubMedCrossRef
35.
go back to reference Zhang Y, Liu Q, Cui M, Wang M, Hua S, Gao J, Liao Q. Comprehensive Analysis of expression, Prognostic Value, and Immune Infiltration for Ubiquitination-related FBXOs in pancreatic ductal adenocarcinoma. Front Immunol. 2021;12:774435.PubMedCrossRef Zhang Y, Liu Q, Cui M, Wang M, Hua S, Gao J, Liao Q. Comprehensive Analysis of expression, Prognostic Value, and Immune Infiltration for Ubiquitination-related FBXOs in pancreatic ductal adenocarcinoma. Front Immunol. 2021;12:774435.PubMedCrossRef
36.
go back to reference Chan MK, Chung JY, Tang PC, Chan AS, Ho JY, Lin TP, Chen J, Leung KT, To KF, Lan HY, et al. TGF-beta signaling networks in the tumor microenvironment. Cancer Lett. 2022;550:215925.PubMedCrossRef Chan MK, Chung JY, Tang PC, Chan AS, Ho JY, Lin TP, Chen J, Leung KT, To KF, Lan HY, et al. TGF-beta signaling networks in the tumor microenvironment. Cancer Lett. 2022;550:215925.PubMedCrossRef
38.
go back to reference Wang B, Liu T, Wu J-C, Luo S-Z, Chen R, Lu L-G, Xu M-Y. STAT3 aggravates TGF-β1-induced hepatic epithelial-to-mesenchymal transition and migration. Biomed Pharmacother. 2018;98:214–21.PubMedCrossRef Wang B, Liu T, Wu J-C, Luo S-Z, Chen R, Lu L-G, Xu M-Y. STAT3 aggravates TGF-β1-induced hepatic epithelial-to-mesenchymal transition and migration. Biomed Pharmacother. 2018;98:214–21.PubMedCrossRef
39.
go back to reference Cherukunnath A, Davargaon RS, Ashraf R, Kamdar U, Srivastava AK, Tripathi PP, Chatterjee N, Kumar S. KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer progression. J Cell Biochem. 2022;123(5):921–34.PubMedCrossRef Cherukunnath A, Davargaon RS, Ashraf R, Kamdar U, Srivastava AK, Tripathi PP, Chatterjee N, Kumar S. KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer progression. J Cell Biochem. 2022;123(5):921–34.PubMedCrossRef
40.
go back to reference Deng L, Zou J, Su Y, Wang M, Zhao L. Resveratrol inhibits TGF-β1-induced EMT in gastric cancer cells through Hippo-YAP signaling pathway. Clin Transl Oncol. 2022;24(11):2210–21.PubMedCrossRef Deng L, Zou J, Su Y, Wang M, Zhao L. Resveratrol inhibits TGF-β1-induced EMT in gastric cancer cells through Hippo-YAP signaling pathway. Clin Transl Oncol. 2022;24(11):2210–21.PubMedCrossRef
41.
go back to reference Razavi AS, Mohtashami M, Razi S, Rezaei N. TGF-beta signaling and the interaction between platelets and T-cells in tumor microenvironment: foes or friends? Cytokine 2022, 150:155772. Razavi AS, Mohtashami M, Razi S, Rezaei N. TGF-beta signaling and the interaction between platelets and T-cells in tumor microenvironment: foes or friends? Cytokine 2022, 150:155772.
42.
go back to reference Trivedi T, Pagnotti GM, Guise TA, Mohammad KS. The role of TGF-beta in bone metastases. Biomolecules 2021, 11(11). Trivedi T, Pagnotti GM, Guise TA, Mohammad KS. The role of TGF-beta in bone metastases. Biomolecules 2021, 11(11).
43.
go back to reference Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, Chen R, Zhou Q. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 2021;12(4):334.PubMedCrossRefPubMedCentral Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, Chen R, Zhou Q. Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 2021;12(4):334.PubMedCrossRefPubMedCentral
44.
go back to reference Chou JL, Chen LY, Lai HC, Chan MW. TGF-beta: friend or foe? The role of TGF-beta/SMAD signaling in epigenetic silencing of ovarian cancer and its implication in epigenetic therapy. Expert Opin Ther Targets. 2010;14(11):1213–23.PubMedCrossRef Chou JL, Chen LY, Lai HC, Chan MW. TGF-beta: friend or foe? The role of TGF-beta/SMAD signaling in epigenetic silencing of ovarian cancer and its implication in epigenetic therapy. Expert Opin Ther Targets. 2010;14(11):1213–23.PubMedCrossRef
45.
go back to reference Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D. Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene. 2012;31(20):2521–34.PubMedCrossRef Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D. Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene. 2012;31(20):2521–34.PubMedCrossRef
46.
47.
go back to reference Wen H, Qian M, He J, Li M, Yu Q, Leng Z. Inhibiting of self-renewal, migration and invasion of ovarian cancer stem cells by blocking TGF-beta pathway. PLoS ONE. 2020;15(3):e0230230.PubMedCrossRefPubMedCentral Wen H, Qian M, He J, Li M, Yu Q, Leng Z. Inhibiting of self-renewal, migration and invasion of ovarian cancer stem cells by blocking TGF-beta pathway. PLoS ONE. 2020;15(3):e0230230.PubMedCrossRefPubMedCentral
Metadata
Title
FBXO28 promotes cell proliferation, migration and invasion via upregulation of the TGF-beta1/SMAD2/3 signaling pathway in ovarian cancer
Authors
Gendi Song
Zhengwei Sun
Man Chu
Zihan Zhang
Jiajia Chen
Zhiwei Wang
Xueqiong Zhu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11893-8

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine