Skip to main content
Top
Published in: Osteoporosis International 2/2012

01-02-2012 | Original Article

Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study

Authors: K. Chiba, M. Uetani, Y. Kido, M. Ito, N. Okazaki, K. Taguchi, H. Shindo

Published in: Osteoporosis International | Issue 2/2012

Login to get access

Abstract

Summary

Subchondral trabecular bone structure was analyzed in knee osteoarthritis (OA) patients using 3-T MRI to investigate structural features of subchondral trabecular bone of knee OA. With OA progression, osteoporotic changes were observed in the lateral joint, showing a higher correlation than sclerotic changes in the medial joint.

Introduction

To investigate structural features of subchondral trabecular bone of knee osteoarthritis (OA).

Methods

Sixty knees with KL grade 0–4 (all female) were examined. Fast imaging employing steady-state acquisition-cycled phases (FIESTA-c) and FatSat Spoiled gradient recalled acquisition in the steady state (SPGR) images were acquired by 3-T MRI. At four sites (the medial femur, medial tibia, lateral femur, and lateral tibia), subchondral trabecular bone structure was analyzed by FIESTA-c imaging, cartilage area was measured by SPGR imaging, and their correlation was analyzed. In addition, the subjects were classified into four groups from the cartilage area measured by SPGR imaging, and subchondral trabecular bone structure in each group was compared.

Results

As cartilage area decreased in the medial joint, bone volume fraction and trabecular thickness in the medial tibia increased, and bone volume fraction, trabecular thickness, number, and connectivity in the lateral femur and lateral tibia decreased (r ≥ 0.4 or ≤−0.4, p ≤ 0.001). Compared to medially, the changes laterally showed a higher correlation. When the medial-lateral ratio of trabecular thickness in the tibia was determined, it had the highest correlation coefficient (r=−0.7, p < 0.001). These changes were not significantly detected in the early stage.

Conclusions

To more sensitively detect OA changes in subchondral trabecular bone structure, a focus on osteoporotic changes in the lateral joint and the medial-lateral ratio would be useful. Detectability of early OA remains unknown, but based on a strong correlation with the degree of OA progression, trabecular structural analysis of subchondral bone may be a useful parameter to evaluate OA severity and evaluate treatment.
Literature
1.
go back to reference Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40PubMed Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40PubMed
2.
go back to reference Lajeunesse D (2004) The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage 12:S34–S38PubMedCrossRef Lajeunesse D (2004) The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage 12:S34–S38PubMedCrossRef
3.
go back to reference Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J (2010) Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol 24:51–70PubMedCrossRef Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J (2010) Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol 24:51–70PubMedCrossRef
4.
go back to reference Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206PubMedCrossRef Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206PubMedCrossRef
5.
go back to reference Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, le Duong T (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243PubMedCrossRef Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, le Duong T (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243PubMedCrossRef
6.
go back to reference Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M et al (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56:2986–2992PubMedCrossRef Felson DT, Niu J, Guermazi A, Roemer F, Aliabadi P, Clancy M et al (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56:2986–2992PubMedCrossRef
7.
go back to reference Lo GH, McAlindon TE, Niu J, Zhang Y, Beals C, Dabrowski C et al (2009) Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage 17:1562–1569PubMedCrossRef Lo GH, McAlindon TE, Niu J, Zhang Y, Beals C, Dabrowski C et al (2009) Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage 17:1562–1569PubMedCrossRef
8.
go back to reference Pelletier JP, Martel-Pelletier J (2007) DMOAD developments: present and future. Bull NYU Hosp Jt Dis 65:242–248PubMed Pelletier JP, Martel-Pelletier J (2007) DMOAD developments: present and future. Bull NYU Hosp Jt Dis 65:242–248PubMed
9.
go back to reference Qvist P, Bay-Jensen AC, Christiansen C, Dam EB, Pastoureau P, Karsdal MA (2008) The disease modifying osteoarthritis drug (DMOAD): is it in the horizon? Pharmacol Res 58:1–7PubMedCrossRef Qvist P, Bay-Jensen AC, Christiansen C, Dam EB, Pastoureau P, Karsdal MA (2008) The disease modifying osteoarthritis drug (DMOAD): is it in the horizon? Pharmacol Res 58:1–7PubMedCrossRef
10.
go back to reference Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D et al (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50:3516–3525PubMedCrossRef Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D et al (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50:3516–3525PubMedCrossRef
11.
go back to reference Garnero P, Aronstein WS, Cohen SB, Conaghan PG, Cline GA, Christiansen C et al (2008) Relationships between biochemical markers of bone and cartilage degradation with radiological progression in patients with knee osteoarthritis receiving risedronate: the knee osteoarthritis structural arthritis randomized clinical trial. Osteoarthritis Cartilage 16:660–666PubMedCrossRef Garnero P, Aronstein WS, Cohen SB, Conaghan PG, Cline GA, Christiansen C et al (2008) Relationships between biochemical markers of bone and cartilage degradation with radiological progression in patients with knee osteoarthritis receiving risedronate: the knee osteoarthritis structural arthritis randomized clinical trial. Osteoarthritis Cartilage 16:660–666PubMedCrossRef
12.
go back to reference Manicourt DH, Altman RD, Williams JM, Devogelaer JP, Druetz-Van Egeren A, Lenz ME et al (1999) Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum 42:1159–1167PubMedCrossRef Manicourt DH, Altman RD, Williams JM, Devogelaer JP, Druetz-Van Egeren A, Lenz ME et al (1999) Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum 42:1159–1167PubMedCrossRef
13.
go back to reference Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Lau EM, Arnold M et al (2010) The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage 18:150–159PubMedCrossRef Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Lau EM, Arnold M et al (2010) The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage 18:150–159PubMedCrossRef
14.
go back to reference Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836PubMedCrossRef
15.
go back to reference Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC et al (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118PubMedCrossRef Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC et al (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118PubMedCrossRef
16.
go back to reference Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRef Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182PubMedCrossRef
17.
go back to reference Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M et al (2002) Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum 46:385–393PubMedCrossRef Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M et al (2002) Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum 46:385–393PubMedCrossRef
18.
go back to reference Gomberg BR, Wehrli FW, Vasili B, Weening RH, Saha PK, Song HK et al (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276PubMedCrossRef Gomberg BR, Wehrli FW, Vasili B, Weening RH, Saha PK, Song HK et al (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276PubMedCrossRef
19.
go back to reference Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314PubMedCrossRef Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314PubMedCrossRef
20.
go back to reference Iita N, Handa S, Tomiha S, Kose K (2007) Development of a compact MRI system for measuring the trabecular bone microstructure of the finger. Magn Reson Med 57:272–277PubMedCrossRef Iita N, Handa S, Tomiha S, Kose K (2007) Development of a compact MRI system for measuring the trabecular bone microstructure of the finger. Magn Reson Med 57:272–277PubMedCrossRef
21.
go back to reference Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X et al (2008) Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 16:1150–1159PubMedCrossRef Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X et al (2008) Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 16:1150–1159PubMedCrossRef
22.
go back to reference Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330PubMedCrossRef Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330PubMedCrossRef
23.
go back to reference Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767CrossRef Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767CrossRef
24.
go back to reference Ogata K, Yoshii I, Kawamura H, Miura H, Arizono T, Sugioka Y (1991) Standing radiographs cannot determine the correction in high tibial osteotomy. J Bone Joint Surg Br 73:927–931PubMed Ogata K, Yoshii I, Kawamura H, Miura H, Arizono T, Sugioka Y (1991) Standing radiographs cannot determine the correction in high tibial osteotomy. J Bone Joint Surg Br 73:927–931PubMed
25.
go back to reference Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-Imbault B, Lespessailles E et al (2006) Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage 14:215–223PubMedCrossRef Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-Imbault B, Lespessailles E et al (2006) Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage 14:215–223PubMedCrossRef
26.
go back to reference Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 85:906–912PubMed Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 85:906–912PubMed
27.
go back to reference Bobinac D, Spanjol J, Zoricic S, Maric I (2003) Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 32:284–290PubMedCrossRef Bobinac D, Spanjol J, Zoricic S, Maric I (2003) Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 32:284–290PubMedCrossRef
28.
go back to reference Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T et al (2004) Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage 12:86–96PubMedCrossRef Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T et al (2004) Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage 12:86–96PubMedCrossRef
29.
go back to reference Sell CA, Masi JN, Burghardt A, Newitt D, Link TM, Majumdar S (2005) Quantification of trabecular bone structure using magnetic resonance imaging at 3 Tesla-calibration studies using microcomputed tomography as a standard of reference. Calcif Tissue Int 76:355–364PubMedCrossRef Sell CA, Masi JN, Burghardt A, Newitt D, Link TM, Majumdar S (2005) Quantification of trabecular bone structure using magnetic resonance imaging at 3 Tesla-calibration studies using microcomputed tomography as a standard of reference. Calcif Tissue Int 76:355–364PubMedCrossRef
Metadata
Title
Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study
Authors
K. Chiba
M. Uetani
Y. Kido
M. Ito
N. Okazaki
K. Taguchi
H. Shindo
Publication date
01-02-2012
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 2/2012
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-011-1585-2

Other articles of this Issue 2/2012

Osteoporosis International 2/2012 Go to the issue