Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Osteoporosis | Research article

The mechanism of miR-889 regulates osteogenesis in human bone marrow mesenchymal stem cells

Authors: Gang Xu, Zheng Ding, Hui-feng Shi

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Bone marrow mesenchymal stem cells (BMMSCs) can be used for bone regeneration in the specified condition. Osteogenic differentiation of BMMSCs is controlled by microRNAs (miRNAs) and other factors. This study was aimed to identify the role and mechanism of miR-889 in regulating the osteogenic differentiation of BMMSCs.

Methods

Osteoporosis patients and normal control bone tissues were collected and used PCR techniques to identify the change of miR-889 and WNT7A. Moreover, the dynamic change of miR-889 and WNT7A during osteogenic differentiation of BMMSCs was also measured. Bioinformatic analysis was performed to identify the target genes and potential pathways of miR-889. Then, we constructed miR-889 mimic and inhibitor, ALP staining, ARS, osteoblastic-related protein, and Wnt β-catenin signaling pathway-related protein were also measured. WNT7A siRNA was also used to verify the function of miR-889.

Results

In the present study, we showed that miR-889 expression was upregulated in osteoporosis patients than healthy control. However, the miR-889 expression was downregulated during osteogenic differentiation. Bioinformatics analysis found that miR-889 targets 666 genes and mainly through Wnt β-catenin signaling pathway. Administrated miR-889 mimic, the ALP activity, and calcium deposition were decreased than the control group, while miR-889 inhibitor shown the opposite trend. And miR-889 could bind the 3′UTR of WNT7A. We further used WNT7A siRNA to explore the function of miR-889, and the results revealed that co-cultured with miR-889 inhibitor and WNT7A siRNA was associated with a reduction of ALP activity and calcium deposition and osteoblastic-related proteins than miR-889 inhibitor alone.

Conclusion

Our results revealed that miR-889 plays a negative role in inducing osteogenic differentiation of BMSCs through Wnt β-catenin signaling pathway.
Literature
1.
go back to reference Sha Y, Lv Y, Xu Z, Yang L, Hao X, Afandi R. MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sci. 2017;189:52–62.CrossRef Sha Y, Lv Y, Xu Z, Yang L, Hao X, Afandi R. MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sci. 2017;189:52–62.CrossRef
2.
go back to reference Wang Z, Jia Y, Du F, Chen M, Dong X, Chen Y, Huang W. IL-17A inhibits osteogenic differentiation of bone mesenchymal stem cells via Wnt signaling pathway. Med Sci Monit. 2017;23:4095–101.CrossRef Wang Z, Jia Y, Du F, Chen M, Dong X, Chen Y, Huang W. IL-17A inhibits osteogenic differentiation of bone mesenchymal stem cells via Wnt signaling pathway. Med Sci Monit. 2017;23:4095–101.CrossRef
3.
go back to reference Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials. 2016;106:205–16.CrossRef Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials. 2016;106:205–16.CrossRef
4.
go back to reference Miller PD. Management of severe osteoporosis. Expert Opin Pharmacother. 2016;17(4):473–88.CrossRef Miller PD. Management of severe osteoporosis. Expert Opin Pharmacother. 2016;17(4):473–88.CrossRef
5.
go back to reference Dontas IA, Yiannakopoulos CK. Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact. 2007;7(3):268–72.PubMed Dontas IA, Yiannakopoulos CK. Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact. 2007;7(3):268–72.PubMed
6.
7.
go back to reference Hosseinpour S, He Y. MicroRNAs involved in the regulation of angiogenesis in bone regeneration. Calcif Tissue Int. 2019;105:223-38.CrossRef Hosseinpour S, He Y. MicroRNAs involved in the regulation of angiogenesis in bone regeneration. Calcif Tissue Int. 2019;105:223-38.CrossRef
8.
go back to reference Feng Q, Zheng S, Zheng J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep. 2018;38(3):1-9. Feng Q, Zheng S, Zheng J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep. 2018;38(3):1-9.
9.
go back to reference Valenti MT, Dalle Carbonare L, Mottes M. Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (review). Int J Mol Med. 2018;41(5):2441–9.PubMed Valenti MT, Dalle Carbonare L, Mottes M. Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (review). Int J Mol Med. 2018;41(5):2441–9.PubMed
10.
go back to reference Taipaleenmaki H. Regulation of bone metabolism by microRNAs. Curr Osteoporos Rep. 2018;16(1):1–12.CrossRef Taipaleenmaki H. Regulation of bone metabolism by microRNAs. Curr Osteoporos Rep. 2018;16(1):1–12.CrossRef
11.
go back to reference Chen Y, Yang YR. miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase. Biosci Reports. 2019;39(3):BSR20181108. Chen Y, Yang YR. miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase. Biosci Reports. 2019;39(3):BSR20181108.
12.
go back to reference Guo Y, Li L, Gao J, Chen X, Sang Q. miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Int J Mol Med. 2017;39(1):71–80.CrossRef Guo Y, Li L, Gao J, Chen X, Sang Q. miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Int J Mol Med. 2017;39(1):71–80.CrossRef
13.
go back to reference Han X, Tang Y, Dai Y, Hu S, Zhou J, Liu X, Zhu J, Wu Y. MiR-889 promotes cell growth in human non-small cell lung cancer by regulating KLF9. Gene. 2019;699:94–101.CrossRef Han X, Tang Y, Dai Y, Hu S, Zhou J, Liu X, Zhu J, Wu Y. MiR-889 promotes cell growth in human non-small cell lung cancer by regulating KLF9. Gene. 2019;699:94–101.CrossRef
14.
go back to reference Ge D, Chen H, Zheng S, Zhang B, Ge Y, Yang L, Cao X. Hsa-miR-889-3p promotes the proliferation of osteosarcoma through inhibiting myeloid cell nuclear differentiation antigen expression. Biomed Pharmacother. 2019;114:108819.CrossRef Ge D, Chen H, Zheng S, Zhang B, Ge Y, Yang L, Cao X. Hsa-miR-889-3p promotes the proliferation of osteosarcoma through inhibiting myeloid cell nuclear differentiation antigen expression. Biomed Pharmacother. 2019;114:108819.CrossRef
15.
go back to reference Long H, Sun B, Cheng L, Zhao S, Zhu Y, Zhao R, Zhu J. miR-139-5p represses BMSC osteogenesis via targeting Wnt/beta-catenin signaling pathway. DNA Cell Biol. 2017;36(8):715–24.CrossRef Long H, Sun B, Cheng L, Zhao S, Zhu Y, Zhao R, Zhu J. miR-139-5p represses BMSC osteogenesis via targeting Wnt/beta-catenin signaling pathway. DNA Cell Biol. 2017;36(8):715–24.CrossRef
16.
go back to reference Cheng SL, Shao JS, Cai J, Sierra OL, Towler DA. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem. 2008;283(29):20505–22.CrossRef Cheng SL, Shao JS, Cai J, Sierra OL, Towler DA. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem. 2008;283(29):20505–22.CrossRef
17.
go back to reference Tao K, Xiao D, Weng J, Xiong A, Kang B, Zeng H. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/beta-catenin signaling pathway. Toxicol Lett. 2016;240(1):68–80.CrossRef Tao K, Xiao D, Weng J, Xiong A, Kang B, Zeng H. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/beta-catenin signaling pathway. Toxicol Lett. 2016;240(1):68–80.CrossRef
18.
go back to reference Xiao Y, Li ZH, Bi YH. MicroRNA-889 promotes cell proliferation in colorectal cancer by targeting DAB2IP. Eur Rev Med Pharmacol Sci. 2019;23(8):3326–34.PubMed Xiao Y, Li ZH, Bi YH. MicroRNA-889 promotes cell proliferation in colorectal cancer by targeting DAB2IP. Eur Rev Med Pharmacol Sci. 2019;23(8):3326–34.PubMed
19.
go back to reference Zhao Z, Ma X, Ma J, Sun X, Li F, Lv J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem Biol Interact. 2018;286:45–51.CrossRef Zhao Z, Ma X, Ma J, Sun X, Li F, Lv J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem Biol Interact. 2018;286:45–51.CrossRef
20.
go back to reference Long H, Zhu Y, Lin Z, Wan J, Cheng L, Zeng M, Tang Y, Zhao R. miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development. Cell Death Dis. 2019;10(7):470.CrossRef Long H, Zhu Y, Lin Z, Wan J, Cheng L, Zeng M, Tang Y, Zhao R. miR-381 modulates human bone mesenchymal stromal cells (BMSCs) osteogenesis via suppressing Wnt signaling pathway during atrophic nonunion development. Cell Death Dis. 2019;10(7):470.CrossRef
21.
go back to reference Li T, Li H, Wang Y, Li T, Fan J, Xiao K, Zhao RC, Weng X. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int J Biochem Cell Biol. 2016;72:55–62.CrossRef Li T, Li H, Wang Y, Li T, Fan J, Xiao K, Zhao RC, Weng X. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int J Biochem Cell Biol. 2016;72:55–62.CrossRef
22.
go back to reference Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2019;47(1):2641–9.CrossRef Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2019;47(1):2641–9.CrossRef
23.
go back to reference Luan F, Ma K, Mao J, Yang F, Zhang M, Luan H. Differentiation of human amniotic epithelial cells into osteoblasts is induced by mechanical stretch via the Wnt/betacatenin signalling pathway. Mol Med Rep. 2018;18(6):5717–25.PubMed Luan F, Ma K, Mao J, Yang F, Zhang M, Luan H. Differentiation of human amniotic epithelial cells into osteoblasts is induced by mechanical stretch via the Wnt/betacatenin signalling pathway. Mol Med Rep. 2018;18(6):5717–25.PubMed
Metadata
Title
The mechanism of miR-889 regulates osteogenesis in human bone marrow mesenchymal stem cells
Authors
Gang Xu
Zheng Ding
Hui-feng Shi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1399-z

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue