Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Osteoporosis | Research article

mir-150-5p inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting irisin to regulate the p38/MAPK signaling pathway

Authors: Jia-long Qi, Zhi-dong Zhang, Zhou Dong, Tao Shan, Zong-sheng Yin

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Purpose

To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin.

Methods

We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone.

Results

Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin.

Conclusion

miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MDC, López-Ruiz E. Current status of the diagnosis and management of osteoporosis. Int J Mol Sci. 2022;23. Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MDC, López-Ruiz E. Current status of the diagnosis and management of osteoporosis. Int J Mol Sci. 2022;23.
2.
go back to reference Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and Bone Homeostasis. Cells. 2020;9. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and Bone Homeostasis. Cells. 2020;9.
3.
go back to reference Yu X, Quan J, Long W, et al. LL-37 inhibits LPS-induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway. Exp Cell Res. 2018;372:178–87.CrossRefPubMed Yu X, Quan J, Long W, et al. LL-37 inhibits LPS-induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway. Exp Cell Res. 2018;372:178–87.CrossRefPubMed
4.
go back to reference Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal Stem/Stromal cells to repair skeletal tissue. Int J Mol Sci. 2020;21. Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal Stem/Stromal cells to repair skeletal tissue. Int J Mol Sci. 2020;21.
5.
go back to reference Vulf M, Khlusov I, Yurova K, et al. MicroRNA regulation of bone marrow mesenchymal stem cells in the development of osteoporosis in obesity. Front Biosci (Schol Ed). 2022;14:17.CrossRefPubMed Vulf M, Khlusov I, Yurova K, et al. MicroRNA regulation of bone marrow mesenchymal stem cells in the development of osteoporosis in obesity. Front Biosci (Schol Ed). 2022;14:17.CrossRefPubMed
6.
go back to reference Ramesh T. Osteogenic differentiation potential of human bone marrow-derived mesenchymal stem cells enhanced by bacoside-A. Cell Biochem Funct. 2021;39:148–58.CrossRefPubMed Ramesh T. Osteogenic differentiation potential of human bone marrow-derived mesenchymal stem cells enhanced by bacoside-A. Cell Biochem Funct. 2021;39:148–58.CrossRefPubMed
7.
go back to reference Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to regulate the adipogenesis and Osteogenesis fate decision in bone marrow-derived mesenchymal stem cells (BM-MSCs). Cells. 2023;12. Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to regulate the adipogenesis and Osteogenesis fate decision in bone marrow-derived mesenchymal stem cells (BM-MSCs). Cells. 2023;12.
8.
go back to reference Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci. 2019;76:441–51.CrossRefPubMed Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci. 2019;76:441–51.CrossRefPubMed
9.
go back to reference Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br Med Bull. 2020;133:79–94.CrossRefPubMed Giordano L, Porta GD, Peretti GM, Maffulli N. Therapeutic potential of microRNA in tendon injuries. Br Med Bull. 2020;133:79–94.CrossRefPubMed
10.
go back to reference Oliviero A, Della Porta G, Peretti GM, Maffulli N. MicroRNA in osteoarthritis: physiopathology, diagnosis and therapeutic challenge. Br Med Bull. 2019;130:137–47.CrossRefPubMed Oliviero A, Della Porta G, Peretti GM, Maffulli N. MicroRNA in osteoarthritis: physiopathology, diagnosis and therapeutic challenge. Br Med Bull. 2019;130:137–47.CrossRefPubMed
11.
go back to reference Bellavia D, Salamanna F, Raimondi L, et al. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci. 2019;76:3723–44.CrossRefPubMed Bellavia D, Salamanna F, Raimondi L, et al. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci. 2019;76:3723–44.CrossRefPubMed
12.
go back to reference Vita F, Gangemi S, Pioggia G, Trimarchi F, Di Mauro D. Physical activity and post-transcriptional regulation of Aging Decay: modulation of pathways in postmenopausal osteoporosis. Med (Kaunas). 2022;58. Vita F, Gangemi S, Pioggia G, Trimarchi F, Di Mauro D. Physical activity and post-transcriptional regulation of Aging Decay: modulation of pathways in postmenopausal osteoporosis. Med (Kaunas). 2022;58.
13.
14.
go back to reference Li Y, Qi W, Shi Y. Mir-150-5p inhibits osteogenic differentiation of fibroblasts in ankylosing spondylitis by targeting VDR. Exp Ther Med. 2022;23:283.CrossRefPubMedPubMedCentral Li Y, Qi W, Shi Y. Mir-150-5p inhibits osteogenic differentiation of fibroblasts in ankylosing spondylitis by targeting VDR. Exp Ther Med. 2022;23:283.CrossRefPubMedPubMedCentral
15.
go back to reference Wang F, Wang Q, Zhao Y, et al. Adipose-derived stem cells with mir-150-5p inhibition laden in hydroxyapatite/tricalcium phosphate ceramic powders promote osteogenesis via regulating Notch3 and activating FAK/ERK and RhoA. Acta Biomater. 2023;155:644–53.CrossRefPubMed Wang F, Wang Q, Zhao Y, et al. Adipose-derived stem cells with mir-150-5p inhibition laden in hydroxyapatite/tricalcium phosphate ceramic powders promote osteogenesis via regulating Notch3 and activating FAK/ERK and RhoA. Acta Biomater. 2023;155:644–53.CrossRefPubMed
16.
go back to reference Wei H, Liu S, Wang T, et al. FNDC5 inhibits autophagy of bone marrow mesenchymal stem cells and promotes their survival after transplantation by downregulating Sp1. Cell Death Discov. 2023;9:336.CrossRefPubMedPubMedCentral Wei H, Liu S, Wang T, et al. FNDC5 inhibits autophagy of bone marrow mesenchymal stem cells and promotes their survival after transplantation by downregulating Sp1. Cell Death Discov. 2023;9:336.CrossRefPubMedPubMedCentral
17.
go back to reference Wei H, Liu K, Wang T, Li Y, Guo S, Li L. FNDC5 overexpression promotes the survival rate of bone marrow mesenchymal stem cells after transplantation in a rat cerebral infarction model. Ann Transl Med. 2022;10:90.CrossRefPubMedPubMedCentral Wei H, Liu K, Wang T, Li Y, Guo S, Li L. FNDC5 overexpression promotes the survival rate of bone marrow mesenchymal stem cells after transplantation in a rat cerebral infarction model. Ann Transl Med. 2022;10:90.CrossRefPubMedPubMedCentral
18.
go back to reference Chen X, Sun K, Zhao S, et al. Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt//β-catenin signal pathway. Cytokine. 2020;136:155292.CrossRefPubMed Chen X, Sun K, Zhao S, et al. Irisin promotes osteogenic differentiation of bone marrow mesenchymal stem cells by activating autophagy via the Wnt//β-catenin signal pathway. Cytokine. 2020;136:155292.CrossRefPubMed
19.
go back to reference Lin X, Wang Y, Guo X, et al. Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway. Odontology. 2023;111:649–57.CrossRefPubMed Lin X, Wang Y, Guo X, et al. Shikonin promotes rat periodontal bone defect repair and osteogenic differentiation of BMSCs by p38 MAPK pathway. Odontology. 2023;111:649–57.CrossRefPubMed
20.
go back to reference Ma N, Teng X, Zheng Q, Chen P. The regulatory mechanism of p38/MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells. J Orthop Surg Res. 2019;14:434.CrossRefPubMedPubMedCentral Ma N, Teng X, Zheng Q, Chen P. The regulatory mechanism of p38/MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells. J Orthop Surg Res. 2019;14:434.CrossRefPubMedPubMedCentral
21.
go back to reference Zhu J, Wang Y, Cao Z, et al. Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Dis. 2020;26:974–82.CrossRefPubMed Zhu J, Wang Y, Cao Z, et al. Irisin promotes cementoblast differentiation via p38 MAPK pathway. Oral Dis. 2020;26:974–82.CrossRefPubMed
22.
go back to reference Huang X, Xiao J, Wang X, Cao Z. Irisin attenuates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells via p38 signaling pathway. Biochem Biophys Res Commun. 2022;618:100–6.CrossRefPubMed Huang X, Xiao J, Wang X, Cao Z. Irisin attenuates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells via p38 signaling pathway. Biochem Biophys Res Commun. 2022;618:100–6.CrossRefPubMed
24.
25.
go back to reference Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol. 2022;123:4–13.CrossRefPubMed Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol. 2022;123:4–13.CrossRefPubMed
26.
go back to reference Gao Q, Wang L, Wang S, Huang B, Jing Y, Su J. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation. Front Cell Dev Biol. 2021;9:787118.CrossRefPubMed Gao Q, Wang L, Wang S, Huang B, Jing Y, Su J. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation. Front Cell Dev Biol. 2021;9:787118.CrossRefPubMed
27.
go back to reference Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA. Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg. 2017;9:13–9.CrossRefPubMedPubMedCentral Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA. Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg. 2017;9:13–9.CrossRefPubMedPubMedCentral
28.
go back to reference Yang YJ, Li XL, Xue Y, et al. Bone marrow cells differentiation into organ cells using stem cell therapy. Eur Rev Med Pharmacol Sci. 2016;20:2899–907.PubMed Yang YJ, Li XL, Xue Y, et al. Bone marrow cells differentiation into organ cells using stem cell therapy. Eur Rev Med Pharmacol Sci. 2016;20:2899–907.PubMed
29.
go back to reference Polymeri A, Giannobile WV, Kaigler D. Bone marrow stromal stem cells in tissue Engineering and Regenerative Medicine. Horm Metab Res. 2016;48:700–13.CrossRefPubMedPubMedCentral Polymeri A, Giannobile WV, Kaigler D. Bone marrow stromal stem cells in tissue Engineering and Regenerative Medicine. Horm Metab Res. 2016;48:700–13.CrossRefPubMedPubMedCentral
30.
go back to reference Zhang Y, Liu Y, Wu M, et al. MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2. Biochem Biophys Res Commun. 2020;521:9–14.CrossRefPubMed Zhang Y, Liu Y, Wu M, et al. MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2. Biochem Biophys Res Commun. 2020;521:9–14.CrossRefPubMed
31.
go back to reference Yang Q, Zhou Y, Wang T, et al. MiRNA-1271-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting forkhead box O1 (FOXO1). Cell Biol Int. 2021;45:1468–76.CrossRefPubMed Yang Q, Zhou Y, Wang T, et al. MiRNA-1271-5p regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting forkhead box O1 (FOXO1). Cell Biol Int. 2021;45:1468–76.CrossRefPubMed
33.
go back to reference Zhang J, Valverde P, Zhu X, et al. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res. 2017;5:16056.CrossRefPubMedPubMedCentral Zhang J, Valverde P, Zhu X, et al. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res. 2017;5:16056.CrossRefPubMedPubMedCentral
34.
go back to reference Buccoliero C, Oranger A, Colaianni G, et al. The effect of Irisin on bone cells in vivo and in vitro. Biochem Soc Trans. 2021;49:477–84.CrossRefPubMed Buccoliero C, Oranger A, Colaianni G, et al. The effect of Irisin on bone cells in vivo and in vitro. Biochem Soc Trans. 2021;49:477–84.CrossRefPubMed
35.
go back to reference Deng J, Zhang N, Wang Y, et al. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther. 2020;11:228.CrossRefPubMedPubMedCentral Deng J, Zhang N, Wang Y, et al. FNDC5/irisin improves the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction. Stem Cell Res Ther. 2020;11:228.CrossRefPubMedPubMedCentral
36.
go back to reference Jiang Y, Xin N, Xiong Y, et al. αCGRP regulates osteogenic differentiation of bone marrow mesenchymal stem cells through ERK1/2 and p38 MAPK signaling pathways. Cell Transpl. 2022;31:9636897221107636.CrossRef Jiang Y, Xin N, Xiong Y, et al. αCGRP regulates osteogenic differentiation of bone marrow mesenchymal stem cells through ERK1/2 and p38 MAPK signaling pathways. Cell Transpl. 2022;31:9636897221107636.CrossRef
37.
go back to reference Li L, Feng J, Sun L, et al. Cannabidiol promotes osteogenic differentiation of bone marrow mesenchymal stem cells in the Inflammatory Microenvironment via the CB2-dependent p38 MAPK signaling pathway. Int J Stem Cells. 2022;15:405–14.CrossRefPubMedPubMedCentral Li L, Feng J, Sun L, et al. Cannabidiol promotes osteogenic differentiation of bone marrow mesenchymal stem cells in the Inflammatory Microenvironment via the CB2-dependent p38 MAPK signaling pathway. Int J Stem Cells. 2022;15:405–14.CrossRefPubMedPubMedCentral
Metadata
Title
mir-150-5p inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting irisin to regulate the p38/MAPK signaling pathway
Authors
Jia-long Qi
Zhi-dong Zhang
Zhou Dong
Tao Shan
Zong-sheng Yin
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04671-6

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue