Skip to main content
Top
Published in: Archives of Osteoporosis 1/2021

01-12-2021 | Osteoporosis | Original Article

Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography

Authors: Chan-Shien Ho, Yueh-Peng Chen, Tzuo-Yau Fan, Chang-Fu Kuo, Tzu-Yun Yen, Yuan-Chang Liu, Yu-Cheng Pei

Published in: Archives of Osteoporosis | Issue 1/2021

Login to get access

Abstract

Summary

DeepDXA is a deep learning model designed to infer bone mineral density data from plain pelvis X-ray, and it can achieve good predicted value for clinical use.

Purpose

Osteoporosis is defined as a systemic disease of the bone characterized by a decrease in bone strength and deterioration of bone structure at the microscopic level, leading to bone fragility and increased risk of fracture. Bone mineral density (BMD) is the preferred method for the diagnosis of osteoporosis, and dual-energy x-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Conventional radiography is more suited for the screening of osteoporosis rather than diagnosis, and osteoporosis can be detected on radiographs by experienced physicians only. This study explored the possibility of predicting BMD relative to DXA using patient radiographs.

Methods

A deep learning algorithm of convolutional neural network (CNN) was used for the purpose. The method includes image segmentation, CNN learning, and a convolution-based regression model (DeepDXA) that links the isolated images of the femur bone to predict BMD value. Data were obtained in a single medical center from 2006 to 2018, with a total amount of 3472 pairs of pelvis X-ray and DXA examination within 1 year.

Results

The proposed workflow successfully predicted BMD values of the femur bone with the correlation coefficient (R) of 0.85 (P < 0.001) and the accuracy of 0.88 for prediction osteoporosis, a finding that could be reliably ready for further clinical use.

Conclusion

When suspicious osteoporosis is seen on plain films using the deep learning method we developed, further referral to DXA for the definite diagnosis of osteoporosis is indicated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Consensus A (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650CrossRef Consensus A (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650CrossRef
2.
go back to reference Solomon C, Black D, Rosen C (2016) Postmenopausal osteoporosis. N Engl J Med 374(3):254–262CrossRef Solomon C, Black D, Rosen C (2016) Postmenopausal osteoporosis. N Engl J Med 374(3):254–262CrossRef
3.
go back to reference Shao C-J, Hsieh Y-H, Tsai C-H, Lai K-A (2009) A nationwide seven-year trend of hip fractures in the elderly population of Taiwan. Bone 44(1):125–129CrossRef Shao C-J, Hsieh Y-H, Tsai C-H, Lai K-A (2009) A nationwide seven-year trend of hip fractures in the elderly population of Taiwan. Bone 44(1):125–129CrossRef
5.
go back to reference Keyak JH, Skinner HB, Fleming JA (2001) Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res 19(4):539–544CrossRef Keyak JH, Skinner HB, Fleming JA (2001) Effect of force direction on femoral fracture load for two types of loading conditions. J Orthop Res 19(4):539–544CrossRef
6.
go back to reference Prevention O (2000) Diagnosis, and therapy. NIH Consens Statement 17(1):1–36 Prevention O (2000) Diagnosis, and therapy. NIH Consens Statement 17(1):1–36
7.
go back to reference Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4(6):368–381CrossRef Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4(6):368–381CrossRef
8.
go back to reference Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. The Lancet 359(9321):1929–1936CrossRef Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. The Lancet 359(9321):1929–1936CrossRef
9.
go back to reference Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141CrossRef Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137–1141CrossRef
10.
go back to reference Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11(1):75–91CrossRef Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11(1):75–91CrossRef
13.
go back to reference Genant HK, Wu CY, Van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148CrossRef Genant HK, Wu CY, Van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148CrossRef
14.
go back to reference Nguyen BNT, Hoshino H, Togawa D, Matsuyama Y (2018) Cortical thickness index of the proximal femur: a radiographic parameter for preliminary assessment of bone mineral density and osteoporosis status in the age 50 years and over population. Clin Orthop Surg 10(2):149–156CrossRef Nguyen BNT, Hoshino H, Togawa D, Matsuyama Y (2018) Cortical thickness index of the proximal femur: a radiographic parameter for preliminary assessment of bone mineral density and osteoporosis status in the age 50 years and over population. Clin Orthop Surg 10(2):149–156CrossRef
15.
go back to reference He Q, Sun H, Shu L, Zhu Y, Xie X, Zhan Y, Luo C (2018) Radiographic predictors for bone mineral loss: cortical thickness and index of the distal femur. Bone & joint research 7(7):468–475CrossRef He Q, Sun H, Shu L, Zhu Y, Xie X, Zhan Y, Luo C (2018) Radiographic predictors for bone mineral loss: cortical thickness and index of the distal femur. Bone & joint research 7(7):468–475CrossRef
16.
go back to reference Clavert P, Javier R-M, Charrissoux J, Obert L, Pidhorz L, Sirveaux F, Mansat P, Fabre T (2016) How to determine the bone mineral density of the distal humerus with radiographic tools? Surg Radiol Anat 38(4):389–393CrossRef Clavert P, Javier R-M, Charrissoux J, Obert L, Pidhorz L, Sirveaux F, Mansat P, Fabre T (2016) How to determine the bone mineral density of the distal humerus with radiographic tools? Surg Radiol Anat 38(4):389–393CrossRef
17.
go back to reference Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc P, Adachi J, Amin S, Atkinson E, Berger C, Burt L, Chapurlat R, Chevalley T, Ferrari S, Goltzman D, Hanley DA, Hannan MT, Khosla S, Liu C-T, Lorentzon M, Mellstrom D, Merle B, Nethander M, Rizzoli R, Sornay-Rendu E, Van Rietbergen B, Sundh D, Wong AKO, Ohlsson C, Demissie S, Kiel DP, Bouxsein ML (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7(1):34–43. https://doi.org/10.1016/S2213-8587(18)30308-5CrossRefPubMed Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc P, Adachi J, Amin S, Atkinson E, Berger C, Burt L, Chapurlat R, Chevalley T, Ferrari S, Goltzman D, Hanley DA, Hannan MT, Khosla S, Liu C-T, Lorentzon M, Mellstrom D, Merle B, Nethander M, Rizzoli R, Sornay-Rendu E, Van Rietbergen B, Sundh D, Wong AKO, Ohlsson C, Demissie S, Kiel DP, Bouxsein ML (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7(1):34–43. https://​doi.​org/​10.​1016/​S2213-8587(18)30308-5CrossRefPubMed
18.
go back to reference Vasikaran S, Eastell R, Bruyère O, Foldes A, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420CrossRef Vasikaran S, Eastell R, Bruyère O, Foldes A, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420CrossRef
19.
go back to reference Johnell O, Odén A, De Laet C, Garnero P, Delmas P, Kanis J (2002) Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int 13(7):523CrossRef Johnell O, Odén A, De Laet C, Garnero P, Delmas P, Kanis J (2002) Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int 13(7):523CrossRef
20.
go back to reference Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD (1999) Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res 14(9):1614–1621CrossRef Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD (1999) Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res 14(9):1614–1621CrossRef
21.
go back to reference Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530CrossRef Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530CrossRef
22.
go back to reference Winzenrieth R, Michelet F, Hans D (2013) Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom 16(3):287–296CrossRef Winzenrieth R, Michelet F, Hans D (2013) Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom 16(3):287–296CrossRef
24.
go back to reference Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg M-A (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14(3):302–312. https://doi.org/10.1016/j.jocd.2011.05.005CrossRefPubMed Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg M-A (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14(3):302–312. https://​doi.​org/​10.​1016/​j.​jocd.​2011.​05.​005CrossRefPubMed
26.
go back to reference Silva BC, Leslie WD (2017) Trabecular bone score: a new DXA–derived measurement for fracture risk assessment. Endocrinol Metab Clin 46(1):153–180CrossRef Silva BC, Leslie WD (2017) Trabecular bone score: a new DXA–derived measurement for fracture risk assessment. Endocrinol Metab Clin 46(1):153–180CrossRef
27.
go back to reference Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293(2):405–411CrossRef Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293(2):405–411CrossRef
29.
go back to reference Cundy T, Cornish J, Evans MC, Gamble G, Stapleton J, Reid IR (1995) Sources of interracial variation in bone mineral density. J Bone Miner Res 10(3):368–373CrossRef Cundy T, Cornish J, Evans MC, Gamble G, Stapleton J, Reid IR (1995) Sources of interracial variation in bone mineral density. J Bone Miner Res 10(3):368–373CrossRef
30.
go back to reference Lindner C, Thiagarajah S, Wilkinson JM, Wallis GA, Cootes TF, Consortium a (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE transactions on medical imaging 32 (8):1462-1472 Lindner C, Thiagarajah S, Wilkinson JM, Wallis GA, Cootes TF, Consortium a (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE transactions on medical imaging 32 (8):1462-1472
31.
go back to reference He K, Zhang X, Ren S, Sun J Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 770–778 He K, Zhang X, Ren S, Sun J Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. pp 770–778
32.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556
33.
go back to reference Zhang H, Xue J, Dana K Deep ten: Texture encoding network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. pp 708–717 Zhang H, Xue J, Dana K Deep ten: Texture encoding network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. pp 708–717
38.
go back to reference Gay J, Harlin H (2019) Texture-based classification for oral cancer detection: implementation and performance analysis of deep learning approaches. Networks (RotEqNet) 8:11 Gay J, Harlin H (2019) Texture-based classification for oral cancer detection: implementation and performance analysis of deep learning approaches. Networks (RotEqNet) 8:11
39.
go back to reference Hu J, Song W, Zhang W, Zhao Y, Yilmaz A (2019) Deep learning for use in lumber classification tasks. Wood Sci Technol 53(2):505–517CrossRef Hu J, Song W, Zhang W, Zhao Y, Yilmaz A (2019) Deep learning for use in lumber classification tasks. Wood Sci Technol 53(2):505–517CrossRef
40.
go back to reference Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23(2):205–214. https://doi.org/10.1359/jbmr.071020CrossRefPubMed Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23(2):205–214. https://​doi.​org/​10.​1359/​jbmr.​071020CrossRefPubMed
43.
go back to reference Lochmüller EM, Miller P, Bürklein D, Wehr U, Rambeck W, Eckstein F (2000) In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 11(4):361–367. https://doi.org/10.1007/s001980070126CrossRefPubMed Lochmüller EM, Miller P, Bürklein D, Wehr U, Rambeck W, Eckstein F (2000) In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 11(4):361–367. https://​doi.​org/​10.​1007/​s001980070126CrossRefPubMed
Metadata
Title
Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography
Authors
Chan-Shien Ho
Yueh-Peng Chen
Tzuo-Yau Fan
Chang-Fu Kuo
Tzu-Yun Yen
Yuan-Chang Liu
Yu-Cheng Pei
Publication date
01-12-2021
Publisher
Springer London
Published in
Archives of Osteoporosis / Issue 1/2021
Print ISSN: 1862-3522
Electronic ISSN: 1862-3514
DOI
https://doi.org/10.1007/s11657-021-00985-8

Other articles of this Issue 1/2021

Archives of Osteoporosis 1/2021 Go to the issue