Skip to main content
Top
Published in: BMC Medical Genetics 1/2016

Open Access 01-12-2016 | Research article

Osteoblastic differentiation of bone marrow mesenchymal stromal cells in Bruck Syndrome

Authors: Carla M. Kaneto, Patrícia S. P. Lima, Dalila Lucíola Zanette, Thiago Yukio Kikuchi Oliveira, Francisco de Assis Pereira, Julio Cesar Cetrulo Lorenzi, Jane Lima dos Santos, Karen L. Prata, João M. Pina Neto, Francisco J. A. de Paula, Wilson A. Silva Jr.

Published in: BMC Medical Genetics | Issue 1/2016

Login to get access

Abstract

Background

Osteogenesis Imperfecta (OI) (OMIM %259450) is a heterogeneous group of inherited disorders characterized by increased bone fragility, with clinical severity ranging from mild to lethal. The majority of OI cases are caused by mutations in COL1A1 or COL1A2. Bruck Syndrome (BS) is a further recessively-inherited OI-like phenotype in which bone fragility is associated with the unusual finding of pterygia and contractures of the large joints. Notably, several studies have failed to show any abnormalities in the biosynthesis of collagen 1 in BS patientes. Evidence was obtained for a specific defect of the procollagen telopeptide lysine hydroxylation in BS, whereas mutations in the gene PLOD2 have been identified. Recently, several studies described FKBP10 mutations in OI-like and BS patients, suggesting that FKBP10 is a bonafide BS locus.

Methods

We analyzed the coding region and intron/exon boundaries of COL1A1, COL1A2, PLOD2 and FKBP10 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. Mononuclear cells obtained from the bone marrow of BS, OI patients and healthy donors were cultured and osteogenic differentiation was induced. The gene expression of osteoblast specific markers were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System.

Results

No mutations in COL1A1, COL1A2 or PLOD2 were found in BS patient. We found a homozygous 1-base-pair duplication (c.831dupC) that is predicted to produce a translational frameshift mutation and a premature protein truncation 17 aminoacids downstream (p.Gly278ArgfsX95). The gene expression of osteoblast specific markers BGLAP, COL1A1, MSX2, SPARC and VDR was evaluated by Real Time RT-PCR during differentiation into osteoblasts and results showed similar patterns of osteoblast markers expression in BS and healthy controls. On the other hand, when compared with OI patients, the expression pattern of these genes was found to be different.

Conclusions

Our work suggests that the gene expression profiles observed during mesenchymal stromal cell differentiation into osteoblast are distinct in BS patients as compared to OI patients. The present study shows for the first time that genes involved in osteogenesis are differentially expressed in BS and OI patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ha-Vinh R, Alanay Y, Bank RA, Campos-Xavier AB, Zankl A, Superti-Furga A, Bonafé L. Phenotypic and molecular characterization of Bruck syndrome (Osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet. 2004;131 A:115–20.CrossRef Ha-Vinh R, Alanay Y, Bank RA, Campos-Xavier AB, Zankl A, Superti-Furga A, Bonafé L. Phenotypic and molecular characterization of Bruck syndrome (Osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet. 2004;131 A:115–20.CrossRef
2.
go back to reference Berg C, Geipel A, Noack F, Smrcek J, Krapp M, Germer U, Bender G, Gembruch U. Prenatal diagnosis of Bruck syndrome. Prenat Diagn. 2005;25:535–8. Berg C, Geipel A, Noack F, Smrcek J, Krapp M, Germer U, Bender G, Gembruch U. Prenatal diagnosis of Bruck syndrome. Prenat Diagn. 2005;25:535–8.
3.
go back to reference Moravej H, Karamifar H, Karamizadeh Z, Amirhakimi G, Atashi S, Nasirabadi S. Bruck syndrome — a rare syndrome of bone fragility and joint contracture and novel homozygous FKBP10 mutation. Endokrynol Pol. 2015;66:170–4.CrossRefPubMed Moravej H, Karamifar H, Karamizadeh Z, Amirhakimi G, Atashi S, Nasirabadi S. Bruck syndrome — a rare syndrome of bone fragility and joint contracture and novel homozygous FKBP10 mutation. Endokrynol Pol. 2015;66:170–4.CrossRefPubMed
4.
go back to reference Mokete L, Robertson A, Viljoen D, Beighton P. Bruck syndrome: Congenital joint contractures with bone fragility. J Orthop Sci. 2005;10:641–6.CrossRefPubMed Mokete L, Robertson A, Viljoen D, Beighton P. Bruck syndrome: Congenital joint contractures with bone fragility. J Orthop Sci. 2005;10:641–6.CrossRefPubMed
5.
go back to reference Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, López-González V, Ashour AM, Amr K, Pulido V, Guillén-Navarro E, Lapunzina P, Caparrós-Martín J a, Ruiz-Perez VL. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome--osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33:1444–9. Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, López-González V, Ashour AM, Amr K, Pulido V, Guillén-Navarro E, Lapunzina P, Caparrós-Martín J a, Ruiz-Perez VL. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome--osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33:1444–9.
6.
go back to reference Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel a F, van der Sluijs H a, Pruijs HE, TeKoppele JM. Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci U S A. 1999;96:1054–8.CrossRefPubMedPubMedCentral Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel a F, van der Sluijs H a, Pruijs HE, TeKoppele JM. Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci U S A. 1999;96:1054–8.CrossRefPubMedPubMedCentral
7.
go back to reference Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20:33–43.CrossRefPubMed Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20:33–43.CrossRefPubMed
8.
go back to reference Van der Slot AJ, Zuurmond AM, Bardoel AFJ, Wijmenga C, Pruijs HEH, Sillence DO, Brinckmann J, Abraham DJ, Black CM, Verzijl N, DeGroot J, Hanemaaijer R, TeKoppele JM, Huizinga TWJ, Bank R a. Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an Important Enzyme in Fibrosis. J Biol Chem. 2003;278:40967–72. Van der Slot AJ, Zuurmond AM, Bardoel AFJ, Wijmenga C, Pruijs HEH, Sillence DO, Brinckmann J, Abraham DJ, Black CM, Verzijl N, DeGroot J, Hanemaaijer R, TeKoppele JM, Huizinga TWJ, Bank R a. Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an Important Enzyme in Fibrosis. J Biol Chem. 2003;278:40967–72.
9.
go back to reference Ishikawa Y, Vranka J, Wirz J, Nagata K, Bächinger HP. The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol Chem. 2008;283:31584–90.CrossRefPubMed Ishikawa Y, Vranka J, Wirz J, Nagata K, Bächinger HP. The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol Chem. 2008;283:31584–90.CrossRefPubMed
10.
go back to reference Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJR, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86:551–9.CrossRefPubMedPubMedCentral Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJR, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86:551–9.CrossRefPubMedPubMedCentral
11.
go back to reference Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, De Paepe A, Lee B. Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res. 2011;26:666–72.CrossRefPubMedPubMedCentral Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E, Symoens S, Willaert A, Elcioglu N, Van Maldergem L, Verellen-Dumoulin C, Gillerot Y, Napierala D, Krakow D, Beighton P, Superti-Furga A, De Paepe A, Lee B. Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res. 2011;26:666–72.CrossRefPubMedPubMedCentral
12.
go back to reference Shaheen R, Al-Owain M, Faqeih E, Al-Hashmi N, Awaji A, Al-Zayed Z, Alkuraya FS. Mutations in FKBP10 cause both Bruck syndrome and isolated osteogenesis imperfecta in humans. Am J Med Genet A. 2011;155A:1448–52.CrossRefPubMed Shaheen R, Al-Owain M, Faqeih E, Al-Hashmi N, Awaji A, Al-Zayed Z, Alkuraya FS. Mutations in FKBP10 cause both Bruck syndrome and isolated osteogenesis imperfecta in humans. Am J Med Genet A. 2011;155A:1448–52.CrossRefPubMed
13.
go back to reference Zhou P, Liu Y, Lv F, Nie M, Jiang Y, Wang O, Xia W, Xing X, Li M. Novel mutations in FKBP10 and PLOD2 cause rare Bruck syndrome in Chinese patients. PLoS One. 2014;9:e107594.CrossRefPubMedPubMedCentral Zhou P, Liu Y, Lv F, Nie M, Jiang Y, Wang O, Xia W, Xing X, Li M. Novel mutations in FKBP10 and PLOD2 cause rare Bruck syndrome in Chinese patients. PLoS One. 2014;9:e107594.CrossRefPubMedPubMedCentral
14.
go back to reference Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov S a, Robey PG, Brenner D a, Yamauchi M. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res. 1999;14:1272–80.CrossRefPubMed Uzawa K, Grzesik WJ, Nishiura T, Kuznetsov S a, Robey PG, Brenner D a, Yamauchi M. Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res. 1999;14:1272–80.CrossRefPubMed
15.
go back to reference Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110:1293–9.CrossRefPubMedPubMedCentral Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110:1293–9.CrossRefPubMedPubMedCentral
16.
go back to reference Kaneto C, Lima P. COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients. BMC Med. 2014;15:45. Kaneto C, Lima P. COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients. BMC Med. 2014;15:45.
17.
go back to reference Caparrós-Martin J a, Valencia M, Pulido V, Martínez-Glez V, Rueda-Arenas I, Amr K, Farra C, Lapunzina P, Ruiz-Perez VL, Temtamy S, Aglan M. Clinical and molecular analysis in families with autosomal recessive osteogenesis imperfecta identifies mutations in five genes and suggests genotype-phenotype correlations. Am J Med Genet A. 2013;161:1354–69.CrossRef Caparrós-Martin J a, Valencia M, Pulido V, Martínez-Glez V, Rueda-Arenas I, Amr K, Farra C, Lapunzina P, Ruiz-Perez VL, Temtamy S, Aglan M. Clinical and molecular analysis in families with autosomal recessive osteogenesis imperfecta identifies mutations in five genes and suggests genotype-phenotype correlations. Am J Med Genet A. 2013;161:1354–69.CrossRef
18.
go back to reference Breslau-Siderius EJ, Engelbert RH, Pals G van der SJ. Bruck syndrome: a rare combination of bone fragility and multiple congenital joint contractures. J Pediatr Orthop. 1998;7:35–8.CrossRef Breslau-Siderius EJ, Engelbert RH, Pals G van der SJ. Bruck syndrome: a rare combination of bone fragility and multiple congenital joint contractures. J Pediatr Orthop. 1998;7:35–8.CrossRef
19.
go back to reference Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR, Bank RA, Pals G, Ankala A, Conneely K, Seaver L, Yandow SM, Raney E, Babovic-Vuksanovic D, Stoler J, Ben-Neriah Z, Segel R, Lieberman S, Siderius L, Al-Aqeel A, Hannibal M, Hudgins L, McPherson E, Clemens M, Sussman MD, Steiner RD, Mahan J, Smith R, Anyane-Yeboa K, Wynn J, Chong K. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet. 2013;22:1–17.CrossRefPubMedPubMedCentral Schwarze U, Cundy T, Pyott SM, Christiansen HE, Hegde MR, Bank RA, Pals G, Ankala A, Conneely K, Seaver L, Yandow SM, Raney E, Babovic-Vuksanovic D, Stoler J, Ben-Neriah Z, Segel R, Lieberman S, Siderius L, Al-Aqeel A, Hannibal M, Hudgins L, McPherson E, Clemens M, Sussman MD, Steiner RD, Mahan J, Smith R, Anyane-Yeboa K, Wynn J, Chong K. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet. 2013;22:1–17.CrossRefPubMedPubMedCentral
20.
go back to reference Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res. 1999;14:1075–83.CrossRefPubMed Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH. Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res. 1999;14:1075–83.CrossRefPubMed
22.
go back to reference Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000;24:391–5.CrossRefPubMed Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000;24:391–5.CrossRefPubMed
23.
go back to reference Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev. 2008;129:163–73.CrossRefPubMed Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev. 2008;129:163–73.CrossRefPubMed
Metadata
Title
Osteoblastic differentiation of bone marrow mesenchymal stromal cells in Bruck Syndrome
Authors
Carla M. Kaneto
Patrícia S. P. Lima
Dalila Lucíola Zanette
Thiago Yukio Kikuchi Oliveira
Francisco de Assis Pereira
Julio Cesar Cetrulo Lorenzi
Jane Lima dos Santos
Karen L. Prata
João M. Pina Neto
Francisco J. A. de Paula
Wilson A. Silva Jr.
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2016
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-016-0301-7

Other articles of this Issue 1/2016

BMC Medical Genetics 1/2016 Go to the issue