Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Osteoarthrosis | Short communication

Specificity of translocator protein-targeted positron emission tomography in inflammatory joint disease

Authors: Yusuf Helo, Graham E. Searle, Federica Borghese, Sonya Abraham, Azeem Saleem

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Objective

Expression of the translocator protein (TSPO) on inflammatory cells has facilitated imaging of synovitis with TSPO-targeted positron emission tomography (PET). We aimed to quantitatively assess the specificity of the second-generation TSPO PET radioligand, [11C]PBR28, and to generate simplified PET protocols in patients with inflammatory joint disease (IJD) in this pilot study.

Methods

Three IJD patients (two rheumatoid arthritis and one osteoarthritis) with knee involvement underwent dynamic [11C]PBR28-PET scans before and after administration of 90 mg of oral emapunil (XBD-173), a TSPO ligand the same day. Radial arterial blood sampling was performed throughout the scan, and total radioactivity and radioactive metabolites were obtained. A semi-automated method was used to generate regions of interest. Standardized uptake value (SUV) and SUV ratio corrected for activity in bone and blood between 50 and 70 min (SUVr50–70 bone, SUVr50–70 blood, respectively) and PET volume of distribution (VT) of the radioligand were calculated.

Results

A mean [11C]PBR28 radioactivity of 378 (range 362–389) MBq was administered. A significant decrease (p < 0.05) in VT, SUVr50–70 bone and SUVr50–70 blood observed after oral emapunil confirmed the TSPO specificity of [11C]PBR28. A decrease in SUV was not observed in the post-block scan.

Conclusion

[11C]PBR28 is TSPO-specific radioligand in IJD patients. Simplified PET protocols with static PET acquisition can be used in the management and evaluation of novel therapeutics that target TSPO overexpressing cells.
Literature
1.
go back to reference Bhattaram P, Chandrasekharan U. The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol. 2017;62:86–93.CrossRef Bhattaram P, Chandrasekharan U. The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol. 2017;62:86–93.CrossRef
2.
go back to reference Furuzawa-Carballeda J, Macip-Rodriguez PM, Cabral AR. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin Exp Rheumatol. 2008;26(4):554–60.PubMed Furuzawa-Carballeda J, Macip-Rodriguez PM, Cabral AR. Osteoarthritis and rheumatoid arthritis pannus have similar qualitative metabolic characteristics and pro-inflammatory cytokine response. Clin Exp Rheumatol. 2008;26(4):554–60.PubMed
3.
go back to reference Allard SA, Maini RN, Muirden KD. Cells and matrix expressing cartilage components in fibroblastic tissue in rheumatoid pannus. Scand J Rheumatol Suppl. 1988;76:125–9.CrossRef Allard SA, Maini RN, Muirden KD. Cells and matrix expressing cartilage components in fibroblastic tissue in rheumatoid pannus. Scand J Rheumatol Suppl. 1988;76:125–9.CrossRef
4.
go back to reference Brown AK, Wakefield RJ, Conaghan PG, Karim Z, O’Connor PJ, Emery P. New approaches to imaging early inflammatory arthritis. Clin Exp Rheumatol. 2004;22(5 Suppl 35):S18-25.PubMed Brown AK, Wakefield RJ, Conaghan PG, Karim Z, O’Connor PJ, Emery P. New approaches to imaging early inflammatory arthritis. Clin Exp Rheumatol. 2004;22(5 Suppl 35):S18-25.PubMed
5.
go back to reference Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Kassiou M, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis. Arthritis Res Ther. 2014;16(2):R70.CrossRef Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Kassiou M, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis. Arthritis Res Ther. 2014;16(2):R70.CrossRef
6.
go back to reference Narayan N, Owen DR, Mandhair H, Smyth E, Carlucci F, Saleem A, et al. Translocator protein as an imaging marker of macrophage and stromal activation in rheumatoid arthritis pannus. J Nucl Med. 2018;59(7):1125–32.CrossRef Narayan N, Owen DR, Mandhair H, Smyth E, Carlucci F, Saleem A, et al. Translocator protein as an imaging marker of macrophage and stromal activation in rheumatoid arthritis pannus. J Nucl Med. 2018;59(7):1125–32.CrossRef
7.
go back to reference Gent YY, Ter Wee MM, Voskuyl AE, den Uyl D, Ahmadi N, Dowling C, et al. Subclinical synovitis detected by macrophage PET, but not MRI, is related to short-term flare of clinical disease activity in early RA patients: an exploratory study. Arthritis Res Ther. 2015;17:266.CrossRef Gent YY, Ter Wee MM, Voskuyl AE, den Uyl D, Ahmadi N, Dowling C, et al. Subclinical synovitis detected by macrophage PET, but not MRI, is related to short-term flare of clinical disease activity in early RA patients: an exploratory study. Arthritis Res Ther. 2015;17:266.CrossRef
8.
go back to reference Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.CrossRef Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.CrossRef
9.
go back to reference Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalogiannopoulou D, Dimber R, et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab. 2014;34(6):989–94.CrossRef Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalogiannopoulou D, Dimber R, et al. Determination of [(11)C]PBR28 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab. 2014;34(6):989–94.CrossRef
10.
go back to reference Saleem A, Searle GE, Kenny LM, Huiban M, Kozlowski K, Waldman AD, et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer. EJNMMI Res. 2015;5:30.CrossRef Saleem A, Searle GE, Kenny LM, Huiban M, Kozlowski K, Waldman AD, et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer. EJNMMI Res. 2015;5:30.CrossRef
11.
go back to reference Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21(6):635–52.CrossRef Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21(6):635–52.CrossRef
12.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.CrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9.CrossRef
13.
go back to reference Woodcock EA, Schain M, Cosgrove KP, Hillmer AT. Quantification of [(11)C]PBR28 data after systemic lipopolysaccharide challenge. EJNMMI Res. 2020;10(1):19.CrossRef Woodcock EA, Schain M, Cosgrove KP, Hillmer AT. Quantification of [(11)C]PBR28 data after systemic lipopolysaccharide challenge. EJNMMI Res. 2020;10(1):19.CrossRef
14.
go back to reference Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med. 2015;56(5):701–6.CrossRef Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med. 2015;56(5):701–6.CrossRef
15.
go back to reference Kam WW, Meikle SR, Zhou H, Zheng Y, Blair JM, Seibel M, et al. The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice. PLoS ONE. 2012;7(1):e30623.CrossRef Kam WW, Meikle SR, Zhou H, Zheng Y, Blair JM, Seibel M, et al. The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice. PLoS ONE. 2012;7(1):e30623.CrossRef
16.
go back to reference Sarubin N, Baghai TC, Lima-Ojeda JM, Melchner D, Hallof-Buestrich H, Wolf L, et al. Translocator protein (TSPO) expression in platelets of depressed patients decreases during antidepressant therapy. Pharmacopsychiatry. 2016;49(5):204–9.CrossRef Sarubin N, Baghai TC, Lima-Ojeda JM, Melchner D, Hallof-Buestrich H, Wolf L, et al. Translocator protein (TSPO) expression in platelets of depressed patients decreases during antidepressant therapy. Pharmacopsychiatry. 2016;49(5):204–9.CrossRef
Metadata
Title
Specificity of translocator protein-targeted positron emission tomography in inflammatory joint disease
Authors
Yusuf Helo
Graham E. Searle
Federica Borghese
Sonya Abraham
Azeem Saleem
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00736-9

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue