Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Osteoarthrosis | Research article

HSPB1 as an RNA-binding protein mediates the pathological process of osteoarthritis

Authors: Qiang Fu, Yi Li, Chunhua Shi

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Heat-shock protein beta1 (HSPB1) is a member of the small HSP family, downregulated in osteoarthritis (OA) chondrocytes and demonstrated the capacity to serve as an RNA-binding protein (RBP). This work aimed to explore the profile of HSPB1 bound RNA and reveal the potential regulation mechanism of HSPB1 in OA. In this work, we captured an unbiased HSPB1-RNA interaction map in Hela cells using the iRIP-seq. The results demonstrated that HSPB1 interacted with plentiful of mRNAs and genomic location toward the CDS region. Functional enrichment of HSPB1-related peaks showed the involvement in gene expression, translation initiation, cellular protein metabolic process, and nonsense-mediated decay. HOMER software analysis showed that HSPB1 bound peaks were over-represented in GAGGAG sequences. In addition, ABLIRC and CIMS algorithm indicated that HSPB1 bound to AU-rich motifs and the proportion of AU-rich peaks in 3′ UTR were slightly higher than that in other regions. Moreover, HSPB1-binding targets analysis revealed several gens were associated with OA including EGFR, PLEC, COL5A1, and ROR2. The association of OA-related mRNAs to HSPB1 was additionally confirmed in OA tissues by the quantitative RIP-PCR experiments. Further experiment demonstrated the downregulation of HSPB1 in OA tissues. In conclusion, our current study confirmed HSPB1 as an RNA-binding protein and revealed its potential function in the pathological process of OA, providing a reliable insight to further investigate the molecular regulation mechanism of HSPB1 in OA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol. 2015;11(4):206–12.PubMedCrossRef Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol. 2015;11(4):206–12.PubMedCrossRef
2.
go back to reference Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.PubMedCrossRef Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625–35.PubMedCrossRef
3.
go back to reference Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;1(66):101249.CrossRef Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 2021;1(66):101249.CrossRef
4.
go back to reference Lagneau N, Tournier P, Nativel F, Maugars Y, Guicheux J, Le Visage C, Delplace V. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials. 2023;13:122091.CrossRef Lagneau N, Tournier P, Nativel F, Maugars Y, Guicheux J, Le Visage C, Delplace V. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials. 2023;13:122091.CrossRef
5.
go back to reference Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a lancet commission. Lancet. 2020;396(10264):1711–2.PubMedCrossRef Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a lancet commission. Lancet. 2020;396(10264):1711–2.PubMedCrossRef
6.
go back to reference Salmon JH, Rat AC, Sellam J, et al. Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. Osteoarthr Cartil. 2016;24(9):1500–8.CrossRef Salmon JH, Rat AC, Sellam J, et al. Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. Osteoarthr Cartil. 2016;24(9):1500–8.CrossRef
7.
go back to reference de Escalopier NI, Anract P, Biau D. Surgical treatments for osteoarthritis. Ann Phys Rehabil Med. 2016;59(3):227–33.CrossRef de Escalopier NI, Anract P, Biau D. Surgical treatments for osteoarthritis. Ann Phys Rehabil Med. 2016;59(3):227–33.CrossRef
8.
go back to reference Kumar A, Palit P, Thomas S, et al. Osteoarthritis: prognosis and emerging therapeutic approach for disease management. Drug Dev Res. 2021;82(1):49–58.PubMedCrossRef Kumar A, Palit P, Thomas S, et al. Osteoarthritis: prognosis and emerging therapeutic approach for disease management. Drug Dev Res. 2021;82(1):49–58.PubMedCrossRef
9.
go back to reference Geuens T, De Winter V, Rajan N, et al. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. Acta Neuropathol Commun. 2017;5(1):5.PubMedPubMedCentralCrossRef Geuens T, De Winter V, Rajan N, et al. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. Acta Neuropathol Commun. 2017;5(1):5.PubMedPubMedCentralCrossRef
10.
go back to reference Haslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol. 2005;12(10):842–6.PubMedCrossRef Haslbeck M, Franzmann T, Weinfurtner D, et al. Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol. 2005;12(10):842–6.PubMedCrossRef
11.
go back to reference Davila D, Jimenez-Mateos EM, Mooney CM, et al. Hsp27 binding to the 3’UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism. Mol Biol Cell. 2014;25(21):3413–23.PubMedPubMedCentralCrossRef Davila D, Jimenez-Mateos EM, Mooney CM, et al. Hsp27 binding to the 3’UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism. Mol Biol Cell. 2014;25(21):3413–23.PubMedPubMedCentralCrossRef
12.
go back to reference Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000;2(9):645–52.PubMedCrossRef Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000;2(9):645–52.PubMedCrossRef
13.
go back to reference Sinsimer KS, Gratacos FM, Knapinska AM, et al. Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol. 2008;28(17):5223–37.PubMedPubMedCentralCrossRef Sinsimer KS, Gratacos FM, Knapinska AM, et al. Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol. 2008;28(17):5223–37.PubMedPubMedCentralCrossRef
14.
go back to reference Lambrecht S, Dhaenens M, Almqvist F, et al. Proteome characterization of human articular chondrocytes leads to novel insights in the function of small heat-shock proteins in chondrocyte homeostasis. Osteoarthr Cartil. 2010;18(3):440–6.CrossRef Lambrecht S, Dhaenens M, Almqvist F, et al. Proteome characterization of human articular chondrocytes leads to novel insights in the function of small heat-shock proteins in chondrocyte homeostasis. Osteoarthr Cartil. 2010;18(3):440–6.CrossRef
15.
go back to reference Lambrecht S, Verbruggen G, Elewaut D, et al. Differential expression of alphaB-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis. Arthritis Rheum. 2009;60(1):179–88.PubMedCrossRef Lambrecht S, Verbruggen G, Elewaut D, et al. Differential expression of alphaB-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis. Arthritis Rheum. 2009;60(1):179–88.PubMedCrossRef
16.
go back to reference Tu Y, Wu X, Yu F, et al. Tristetraprolin-RNA interaction map reveals a novel TTP-RelB regulatory network for innate immunity gene expression. Mol Immunol. 2020;121:59–71.PubMedCrossRef Tu Y, Wu X, Yu F, et al. Tristetraprolin-RNA interaction map reveals a novel TTP-RelB regulatory network for innate immunity gene expression. Mol Immunol. 2020;121:59–71.PubMedCrossRef
17.
go back to reference Wei J, Li DK, Hu X, et al. Galectin-1-RNA interaction map reveals potential regulatory roles in angiogenesis. FEBS Lett. 2021;595(5):623–36.PubMedCrossRef Wei J, Li DK, Hu X, et al. Galectin-1-RNA interaction map reveals potential regulatory roles in angiogenesis. FEBS Lett. 2021;595(5):623–36.PubMedCrossRef
18.
go back to reference Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.PubMedPubMedCentralCrossRef Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.PubMedPubMedCentralCrossRef
19.
go back to reference Xia H, Chen D, Wu Q, et al. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochim Biophys Acta Gene Regul Mech. 2017;1860(9):911–21.PubMedCrossRef Xia H, Chen D, Wu Q, et al. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochim Biophys Acta Gene Regul Mech. 2017;1860(9):911–21.PubMedCrossRef
20.
go back to reference Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.PubMedPubMedCentralCrossRef Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89.PubMedPubMedCentralCrossRef
21.
go back to reference Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.PubMedPubMedCentralCrossRef Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.PubMedPubMedCentralCrossRef
22.
go back to reference Zhang Z, Huang C, Jiang Q, Zheng Y, Liu Y, Liu S, Chen Y, Mei Y, Ding C, Chen M, Gu X. Guidelines for the diagnosis and treatment of osteoarthritis in China. Ann Transl Med. 2020;8(19):1213.PubMedPubMedCentralCrossRef Zhang Z, Huang C, Jiang Q, Zheng Y, Liu Y, Liu S, Chen Y, Mei Y, Ding C, Chen M, Gu X. Guidelines for the diagnosis and treatment of osteoarthritis in China. Ann Transl Med. 2020;8(19):1213.PubMedPubMedCentralCrossRef
23.
go back to reference Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 2020;72(2):220–33.PubMedPubMedCentralCrossRef Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 2020;72(2):220–33.PubMedPubMedCentralCrossRef
24.
go back to reference Wang X, Zhang H, Zhang M, et al. Proteogenomic characterization of ferroptosis regulators reveals therapeutic potential in glioblastoma. BMC Cancer. 2023;23(1):415.PubMedPubMedCentralCrossRef Wang X, Zhang H, Zhang M, et al. Proteogenomic characterization of ferroptosis regulators reveals therapeutic potential in glioblastoma. BMC Cancer. 2023;23(1):415.PubMedPubMedCentralCrossRef
25.
go back to reference Peng S, Yin Y, Zhang Y, et al. FYN/TOPK/HSPB1 axis facilitates the proliferation and metastasis of gastric cancer. J Exp Clin Cancer Res. 2023;42(1):80.PubMedPubMedCentralCrossRef Peng S, Yin Y, Zhang Y, et al. FYN/TOPK/HSPB1 axis facilitates the proliferation and metastasis of gastric cancer. J Exp Clin Cancer Res. 2023;42(1):80.PubMedPubMedCentralCrossRef
26.
go back to reference Adriaenssens E, Asselbergh B, Rivera-Mejias P, et al. Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol. 2023;25(3):467–80.PubMedPubMedCentralCrossRef Adriaenssens E, Asselbergh B, Rivera-Mejias P, et al. Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol. 2023;25(3):467–80.PubMedPubMedCentralCrossRef
27.
go back to reference Chen W, Ren X, Wu J, et al. HSP27 associates with epithelial-mesenchymal transition, stemness and radioresistance of salivary adenoid cystic carcinoma. J Cell Mol Med. 2018;22(4):2283–98.PubMedPubMedCentralCrossRef Chen W, Ren X, Wu J, et al. HSP27 associates with epithelial-mesenchymal transition, stemness and radioresistance of salivary adenoid cystic carcinoma. J Cell Mol Med. 2018;22(4):2283–98.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Kuroyanagi G, Tokuda H, Yamamoto N, et al. Unphosphorylated HSP27 (HSPB1) regulates the translation initiation process via a direct association with eIF4E in osteoblasts. Int J Mol Med. 2015;36(3):881–9.PubMedCrossRef Kuroyanagi G, Tokuda H, Yamamoto N, et al. Unphosphorylated HSP27 (HSPB1) regulates the translation initiation process via a direct association with eIF4E in osteoblasts. Int J Mol Med. 2015;36(3):881–9.PubMedCrossRef
30.
go back to reference Wang S, Zhang X, Wang H, et al. Heat shock protein 27 enhances SUMOylation of heat shock protein b8 to accelerate the progression of breast cancer. Am J Pathol. 2020;190(12):2464–77.PubMedCrossRef Wang S, Zhang X, Wang H, et al. Heat shock protein 27 enhances SUMOylation of heat shock protein b8 to accelerate the progression of breast cancer. Am J Pathol. 2020;190(12):2464–77.PubMedCrossRef
31.
go back to reference Park AM, Tsunoda I, Yoshie O. Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem. 2018;293(41):15815–26.PubMedPubMedCentralCrossRef Park AM, Tsunoda I, Yoshie O. Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem. 2018;293(41):15815–26.PubMedPubMedCentralCrossRef
32.
go back to reference Vicente Miranda H, Chegao A, Oliveira MS, et al. Hsp27 reduces glycation-induced toxicity and aggregation of alpha-synuclein. FASEB J. 2020;34(5):6718–28.PubMedCrossRef Vicente Miranda H, Chegao A, Oliveira MS, et al. Hsp27 reduces glycation-induced toxicity and aggregation of alpha-synuclein. FASEB J. 2020;34(5):6718–28.PubMedCrossRef
33.
go back to reference Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in arabidopsis. Plant Cell. 2023;35(6):1936–55.PubMedPubMedCentralCrossRef Nagarajan VK, Stuart CJ, DiBattista AT, Accerbi M, Caplan JL, Green PJ. RNA degradome analysis reveals DNE1 endoribonuclease is required for the turnover of diverse mRNA substrates in arabidopsis. Plant Cell. 2023;35(6):1936–55.PubMedPubMedCentralCrossRef
36.
go back to reference Wilusz CJ, Wormington M, Peltz SW. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001;2(4):237–46.PubMedCrossRef Wilusz CJ, Wormington M, Peltz SW. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001;2(4):237–46.PubMedCrossRef
37.
go back to reference Sommer S, Cui Y, Brewer G, et al. The c-Yes 3’-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol. 2005;97(3):219–29.PubMedCrossRef Sommer S, Cui Y, Brewer G, et al. The c-Yes 3’-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol. 2005;97(3):219–29.PubMedCrossRef
38.
go back to reference Jia H, Ma X, Tong W, et al. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Proc Natl Acad Sci USA. 2016;113(50):14360–5.ADSPubMedPubMedCentralCrossRef Jia H, Ma X, Tong W, et al. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Proc Natl Acad Sci USA. 2016;113(50):14360–5.ADSPubMedPubMedCentralCrossRef
39.
go back to reference Wei Y, Luo L, Gui T, Yu F, Yan L, Yao L, Zhong L, Yu W, Han B, Patel JM, Liu JF. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med. 2021;13(576):3946.CrossRef Wei Y, Luo L, Gui T, Yu F, Yan L, Yao L, Zhong L, Yu W, Han B, Patel JM, Liu JF. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med. 2021;13(576):3946.CrossRef
40.
go back to reference Rice SJ, Tselepi M, Sorial AK, et al. Prioritization of PLEC and GRINA as osteoarthritis risk genes through the identification and characterization of novel methylation quantitative trait loci. Arthritis Rheumatol. 2019;71(8):1285–96.PubMedPubMedCentralCrossRef Rice SJ, Tselepi M, Sorial AK, et al. Prioritization of PLEC and GRINA as osteoarthritis risk genes through the identification and characterization of novel methylation quantitative trait loci. Arthritis Rheumatol. 2019;71(8):1285–96.PubMedPubMedCentralCrossRef
41.
go back to reference Sorial AK, Hofer IMJ, Tselepi M, et al. Multi-tissue epigenetic analysis of the osteoarthritis susceptibility locus mapping to the plectin gene PLEC. Osteoarth Cartil. 2020;28(11):1448–58.CrossRef Sorial AK, Hofer IMJ, Tselepi M, et al. Multi-tissue epigenetic analysis of the osteoarthritis susceptibility locus mapping to the plectin gene PLEC. Osteoarth Cartil. 2020;28(11):1448–58.CrossRef
42.
43.
go back to reference Thorup AS, Strachan D, Caxaria S, et al. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med. 2020;12(561):3063.CrossRef Thorup AS, Strachan D, Caxaria S, et al. ROR2 blockade as a therapy for osteoarthritis. Sci Transl Med. 2020;12(561):3063.CrossRef
Metadata
Title
HSPB1 as an RNA-binding protein mediates the pathological process of osteoarthritis
Authors
Qiang Fu
Yi Li
Chunhua Shi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04580-8

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue