Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 4/2022

Open Access 01-04-2022 | Osteoarthrosis | KNEE

Cell-based treatment options facilitate regeneration of cartilage, ligaments and meniscus in demanding conditions of the knee by a whole joint approach

Authors: Peter Angele, Denitsa Docheva, Girish Pattappa, Johannes Zellner

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 4/2022

Login to get access

Abstract

Purpose

This article provides an update on the current therapeutic options for cell-based regenerative treatment of the knee with a critical review of the present literature including a future perspective on the use of regenerative cell-based approaches. Special emphasis has been given on the requirement of a whole joint approach with treatment of comorbidities with aim of knee cartilage restoration, particularly in demanding conditions like early osteoarthritis.

Methods

This narrative review evaluates recent clinical data and published research articles on cell-based regenerative treatment options for cartilage and other structures around the knee

Results

Cell-based regenerative therapies for cartilage repair have become standard practice for the treatment of focal, traumatic chondral defects of the knee. Specifically, matrix-assisted autologous chondrocyte transplantation (MACT) shows satisfactory long-term results regarding radiological, histological and clinical outcome for treatment of large cartilage defects. Data show that regenerative treatment of the knee requires a whole joint approach by addressing all comorbidities including axis deviation, instability or meniscus pathologies. Further development of novel biomaterials and the discovery of alternative cell sources may facilitate the process of cell-based regenerative therapies for all knee structures becoming the gold standard in the future.

Conclusion

Overall, cell-based regenerative cartilage therapy of the knee has shown tremendous development over the last years and has become the standard of care for large and isolated chondral defects. It has shown success in the treatment of traumatic, osteochondral defects but also for degenerative cartilage lesions in the demanding condition of early OA. Future developments and alternative cell sources may help to facilitate cell-based regenerative treatment for all different structures around the knee by a whole joint approach.

Level of evidence

IV.
Literature
1.
go back to reference Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E et al (2015) Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 135:251–263PubMed Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E et al (2015) Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 135:251–263PubMed
2.
go back to reference Aldrian S, Zak L, Wondrasch B, Albrecht C, Stelzeneder B, Binder H et al (2014) Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: a prospective follow-up at a minimum of 10 years. Am J Sports Med 42:2680–2688PubMed Aldrian S, Zak L, Wondrasch B, Albrecht C, Stelzeneder B, Binder H et al (2014) Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: a prospective follow-up at a minimum of 10 years. Am J Sports Med 42:2680–2688PubMed
3.
go back to reference Anderson DE, Markway BD, Weekes KJ, McCarthy HE, Johnstone B (2018) Physioxia promotes the articular chondrocyte-like phenotype in human chondroprogenitor-derived self-organized tissue. Tissue Eng Part A 24:264–274PubMedPubMedCentral Anderson DE, Markway BD, Weekes KJ, McCarthy HE, Johnstone B (2018) Physioxia promotes the articular chondrocyte-like phenotype in human chondroprogenitor-derived self-organized tissue. Tissue Eng Part A 24:264–274PubMedPubMedCentral
4.
go back to reference Andriolo L, Reale D, Di Martino A, De Filippis R, Sessa A, Zaffagnini S et al (2020) Long-term results of arthroscopic matrix-assisted autologous chondrocyte transplantation: a prospective follow-up at 15 years. Am J Sports Med 48:2994–3001PubMed Andriolo L, Reale D, Di Martino A, De Filippis R, Sessa A, Zaffagnini S et al (2020) Long-term results of arthroscopic matrix-assisted autologous chondrocyte transplantation: a prospective follow-up at 15 years. Am J Sports Med 48:2994–3001PubMed
5.
go back to reference Angele P, Fritz J, Albrecht D, Koh J, Zellner J (2015) Defect type, localization and marker gene expression determines early adverse events of matrix-associated autologous chondrocyte implantation. Injury 46(Suppl 4):S2-9PubMed Angele P, Fritz J, Albrecht D, Koh J, Zellner J (2015) Defect type, localization and marker gene expression determines early adverse events of matrix-associated autologous chondrocyte implantation. Injury 46(Suppl 4):S2-9PubMed
6.
go back to reference Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V et al (2008) Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 85:445–455PubMed Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V et al (2008) Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 85:445–455PubMed
7.
go back to reference Angele P, Niemeyer P, Steinwachs M, Filardo G, Gomoll AH, Kon E et al (2016) Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24:1743–1752PubMed Angele P, Niemeyer P, Steinwachs M, Filardo G, Gomoll AH, Kon E et al (2016) Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24:1743–1752PubMed
8.
go back to reference Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527PubMed Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527PubMed
9.
go back to reference Bayliss LE, Culliford D, Monk AP, Glyn-Jones S, Prieto-Alhambra D, Judge A et al (2017) The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet 389:1424–1430PubMedPubMedCentral Bayliss LE, Culliford D, Monk AP, Glyn-Jones S, Prieto-Alhambra D, Judge A et al (2017) The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet 389:1424–1430PubMedPubMedCentral
10.
go back to reference Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 19:1316–1319PubMed Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 19:1316–1319PubMed
11.
go back to reference Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW (2012) Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br 94:504–509PubMed Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW (2012) Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br 94:504–509PubMed
12.
go back to reference Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895PubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895PubMed
14.
go back to reference Centeno C, Markle J, Dodson E, Stemper I, Williams C, Hyzy M et al (2018) Symptomatic anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow concentrate and platelet products: a non-controlled registry study. J Transl Med 16:246PubMedPubMedCentral Centeno C, Markle J, Dodson E, Stemper I, Williams C, Hyzy M et al (2018) Symptomatic anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow concentrate and platelet products: a non-controlled registry study. J Transl Med 16:246PubMedPubMedCentral
15.
go back to reference Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD et al (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27:1432–1438PubMed Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD et al (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27:1432–1438PubMed
16.
go back to reference Cox CL, Huston LJ, Dunn WR, Reinke EK, Nwosu SK, Parker RD et al (2014) Are articular cartilage lesions and meniscus tears predictive of IKDC, KOOS, and Marx activity level outcomes after anterior cruciate ligament reconstruction? A 6-year multicenter cohort study. Am J Sports Med 42:1058–1067PubMedPubMedCentral Cox CL, Huston LJ, Dunn WR, Reinke EK, Nwosu SK, Parker RD et al (2014) Are articular cartilage lesions and meniscus tears predictive of IKDC, KOOS, and Marx activity level outcomes after anterior cruciate ligament reconstruction? A 6-year multicenter cohort study. Am J Sports Med 42:1058–1067PubMedPubMedCentral
17.
go back to reference Crawford DC, DeBerardino TM, Williams RJ 3rd (2012) NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 94:979–989PubMed Crawford DC, DeBerardino TM, Williams RJ 3rd (2012) NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 94:979–989PubMed
18.
go back to reference Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460PubMed Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460PubMed
19.
go back to reference De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80PubMed De Bari C, Roelofs AJ (2018) Stem cell-based therapeutic strategies for cartilage defects and osteoarthritis. Curr Opin Pharmacol 40:74–80PubMed
20.
go back to reference de Windt TS, Vonk LA, Brittberg M, Saris DB (2013) Treatment and prevention of (Early) osteoarthritis using articular cartilage repair-fact or fiction? A systematic review. Cartilage 4:5S-12SPubMedPubMedCentral de Windt TS, Vonk LA, Brittberg M, Saris DB (2013) Treatment and prevention of (Early) osteoarthritis using articular cartilage repair-fact or fiction? A systematic review. Cartilage 4:5S-12SPubMedPubMedCentral
21.
go back to reference de Windt TS, Vonk LA, Slaper-Cortenbach ICM, Nizak R, van Rijen MHP, Saris DBF (2017) Allogeneic MSCs and recycled autologous chondrons mixed in a one-stage cartilage cell transplantion: a first-in-man trial in 35 patients. Stem Cells 35:1984–1993PubMed de Windt TS, Vonk LA, Slaper-Cortenbach ICM, Nizak R, van Rijen MHP, Saris DBF (2017) Allogeneic MSCs and recycled autologous chondrons mixed in a one-stage cartilage cell transplantion: a first-in-man trial in 35 patients. Stem Cells 35:1984–1993PubMed
22.
go back to reference Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G et al (2012) Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 40:75–82PubMed Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G et al (2012) Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 40:75–82PubMed
23.
go back to reference Di Matteo B, Loibl M, Andriolo L, Filardo G, Zellner J, Koch M et al (2016) Biologic agents for anterior cruciate ligament healing: a systematic review. World J Orthop 7:592–603PubMedPubMedCentral Di Matteo B, Loibl M, Andriolo L, Filardo G, Zellner J, Koch M et al (2016) Biologic agents for anterior cruciate ligament healing: a systematic review. World J Orthop 7:592–603PubMedPubMedCentral
24.
go back to reference DiBartola AC, Everhart JS, Magnussen RA, Carey JL, Brophy RH, Schmitt LC et al (2016) Correlation between histological outcome and surgical cartilage repair technique in the knee: a meta-analysis. Knee 23:344–349PubMed DiBartola AC, Everhart JS, Magnussen RA, Carey JL, Brophy RH, Schmitt LC et al (2016) Correlation between histological outcome and surgical cartilage repair technique in the knee: a meta-analysis. Knee 23:344–349PubMed
26.
go back to reference Du G, Zhan H, Ding D, Wang S, Wei X, Wei F et al (2016) Abnormal mechanical loading induces cartilage degeneration by accelerating meniscus hypertrophy and mineralization after ACL injuries in vivo. Am J Sports Med 44:652–663PubMedPubMedCentral Du G, Zhan H, Ding D, Wang S, Wei X, Wei F et al (2016) Abnormal mechanical loading induces cartilage degeneration by accelerating meniscus hypertrophy and mineralization after ACL injuries in vivo. Am J Sports Med 44:652–663PubMedPubMedCentral
27.
go back to reference Farr J, Tabet SK, Margerrison E, Cole BJ (2014) Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 42:1417–1425PubMed Farr J, Tabet SK, Margerrison E, Cole BJ (2014) Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med 42:1417–1425PubMed
28.
go back to reference Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M (2011) Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med 39:2153–2160PubMed Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M (2011) Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med 39:2153–2160PubMed
29.
go back to reference Fortier LA, Cole BJ, McIlwraith CW (2012) Science and animal models of marrow stimulation for cartilage repair. J Knee Surg 25:3–8PubMed Fortier LA, Cole BJ, McIlwraith CW (2012) Science and animal models of marrow stimulation for cartilage repair. J Knee Surg 25:3–8PubMed
30.
go back to reference Frisbie DD, McCarthy HE, Archer CW, Barrett MF, McIlwraith CW (2015) Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model. J Bone Joint Surg Am 97:484–493PubMed Frisbie DD, McCarthy HE, Archer CW, Barrett MF, McIlwraith CW (2015) Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model. J Bone Joint Surg Am 97:484–493PubMed
31.
go back to reference Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W et al (2013) Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg 133:87–93PubMed Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W et al (2013) Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg 133:87–93PubMed
32.
go back to reference Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18:1456–1464PubMed Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18:1456–1464PubMed
33.
go back to reference Gobbi A, Whyte GP (2018) Long-term outcomes of primary repair of the anterior cruciate ligament combined with biologic healing augmentation to treat incomplete tears. Am J Sports Med 46:3368–3377PubMed Gobbi A, Whyte GP (2018) Long-term outcomes of primary repair of the anterior cruciate ligament combined with biologic healing augmentation to treat incomplete tears. Am J Sports Med 46:3368–3377PubMed
34.
go back to reference Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E et al (2012) 10-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 40:2499–2508PubMed Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E et al (2012) 10-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 40:2499–2508PubMed
35.
go back to reference Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR et al (2010) The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 1:253–261PubMedPubMedCentral Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR et al (2010) The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 1:253–261PubMedPubMedCentral
36.
go back to reference Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC (2011) Failures, re-operations, and complications after autologous chondrocyte implantation–a systematic review. Osteoarthritis Cartilage 19:779–791PubMed Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC (2011) Failures, re-operations, and complications after autologous chondrocyte implantation–a systematic review. Osteoarthritis Cartilage 19:779–791PubMed
37.
go back to reference Haynes J, Sassoon A, Nam D, Schultz L, Keeney J (2017) Younger patients have less severe radiographic disease and lower reported outcome scores than older patients undergoing total knee arthroplasty. Knee 24:663–669PubMed Haynes J, Sassoon A, Nam D, Schultz L, Keeney J (2017) Younger patients have less severe radiographic disease and lower reported outcome scores than older patients undergoing total knee arthroplasty. Knee 24:663–669PubMed
38.
go back to reference Henderson I, Lavigne P, Valenzuela H, Oakes B (2007) Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 455:253–261PubMed Henderson I, Lavigne P, Valenzuela H, Oakes B (2007) Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 455:253–261PubMed
39.
go back to reference Hirzinger C, Tauber M, Korntner S, Quirchmayr M, Bauer HC, Traweger A et al (2014) ACL injuries and stem cell therapy. Arch Orthop Trauma Surg 134:1573–1578PubMed Hirzinger C, Tauber M, Korntner S, Quirchmayr M, Bauer HC, Traweger A et al (2014) ACL injuries and stem cell therapy. Arch Orthop Trauma Surg 134:1573–1578PubMed
41.
go back to reference Hollander AP, Dickinson SC, Sims TJ, Brun P, Cortivo R, Kon E et al (2006) Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 12:1787–1798PubMed Hollander AP, Dickinson SC, Sims TJ, Brun P, Cortivo R, Kon E et al (2006) Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 12:1787–1798PubMed
42.
go back to reference Hunziker EB, Lippuner K, Keel MJ, Shintani N (2015) An educational review of cartilage repair: precepts and practice–myths and misconceptions–progress and prospects. Osteoarthritis Cartilage 23:334–350PubMed Hunziker EB, Lippuner K, Keel MJ, Shintani N (2015) An educational review of cartilage repair: precepts and practice–myths and misconceptions–progress and prospects. Osteoarthritis Cartilage 23:334–350PubMed
43.
go back to reference Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Ludvigsen TC, Loken S et al (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 98:1332–1339PubMed Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Ludvigsen TC, Loken S et al (2016) A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am 98:1332–1339PubMed
44.
go back to reference Koch M, Achatz FP, Lang S, Pfeifer CG, Pattappa G, Kujat R et al (2018) Tissue engineering of large full-size meniscus defects by a polyurethane scaffold: accelerated regeneration by mesenchymal stromal cells. Stem Cells Int 28:8207071 Koch M, Achatz FP, Lang S, Pfeifer CG, Pattappa G, Kujat R et al (2018) Tissue engineering of large full-size meniscus defects by a polyurethane scaffold: accelerated regeneration by mesenchymal stromal cells. Stem Cells Int 28:8207071
45.
go back to reference Koch M, Matteo BD, Eichhorn J, Zellner J, Mayr F, Krutsch W et al (2018) Intra-ligamentary autologous conditioned plasma and healing response to treat partial ACL ruptures. Arch Orthop Trauma Surg 138:675–683PubMed Koch M, Matteo BD, Eichhorn J, Zellner J, Mayr F, Krutsch W et al (2018) Intra-ligamentary autologous conditioned plasma and healing response to treat partial ACL ruptures. Arch Orthop Trauma Surg 138:675–683PubMed
46.
go back to reference Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S et al (2011) Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 39:2549–2557PubMed Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S et al (2011) Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 39:2549–2557PubMed
47.
go back to reference Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C et al (2011) Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 39:1668–1675PubMed Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C et al (2011) Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 39:1668–1675PubMed
48.
go back to reference Kon E, Roffi A, Filardo G, Tesei G, Marcacci M (2015) Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31:767–775PubMed Kon E, Roffi A, Filardo G, Tesei G, Marcacci M (2015) Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31:767–775PubMed
49.
go back to reference Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P et al (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22:1180–1186PubMed Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P et al (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22:1180–1186PubMed
50.
go back to reference Krill M, Early N, Everhart JS, Flanigan DC (2018) Autologous chondrocyte implantation (ACI) for knee cartilage defects: a review of indications, technique, and outcomes. JBJS Rev 6:e5PubMed Krill M, Early N, Everhart JS, Flanigan DC (2018) Autologous chondrocyte implantation (ACI) for knee cartilage defects: a review of indications, technique, and outcomes. JBJS Rev 6:e5PubMed
51.
go back to reference Krych AJ, Saris DBF, Stuart MJ, Hacken B (2020) Cartilage injury in the knee: assessment and treatment options. J Am Acad Orthop Surg 28:914–922PubMed Krych AJ, Saris DBF, Stuart MJ, Hacken B (2020) Cartilage injury in the knee: assessment and treatment options. J Am Acad Orthop Surg 28:914–922PubMed
52.
go back to reference Kusano T, Jakob RP, Gautier E, Magnussen RA, Hoogewoud H, Jacobi M (2012) Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc 20:2109–2115PubMed Kusano T, Jakob RP, Gautier E, Magnussen RA, Hoogewoud H, Jacobi M (2012) Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc 20:2109–2115PubMed
53.
go back to reference LaPrade RF, Bursch LS, Olson EJ, Havlas V, Carlson CS (2008) Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med 36:360–368PubMed LaPrade RF, Bursch LS, Olson EJ, Havlas V, Carlson CS (2008) Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am J Sports Med 36:360–368PubMed
54.
go back to reference Levillain A, Boulocher C, Kaderli S, Viguier E, Hannouche D, Hoc T et al (2015) Meniscal biomechanical alterations in an ACLT rabbit model of early osteoarthritis. Osteoarthritis Cartilage 23:1186–1193PubMed Levillain A, Boulocher C, Kaderli S, Viguier E, Hannouche D, Hoc T et al (2015) Meniscal biomechanical alterations in an ACLT rabbit model of early osteoarthritis. Osteoarthritis Cartilage 23:1186–1193PubMed
55.
go back to reference Li CS, Karlsson J, Winemaker M, Sancheti P, Bhandari M (2014) Orthopedic surgeons feel that there is a treatment gap in management of early OA: international survey. Knee Surg Sports Traumatol Arthrosc 22:363–378PubMed Li CS, Karlsson J, Winemaker M, Sancheti P, Bhandari M (2014) Orthopedic surgeons feel that there is a treatment gap in management of early OA: international survey. Knee Surg Sports Traumatol Arthrosc 22:363–378PubMed
56.
go back to reference Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R et al (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 24:1753–1762PubMed Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R et al (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 24:1753–1762PubMed
57.
go back to reference Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20:407–422PubMed Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20:407–422PubMed
58.
go back to reference Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411–7431PubMedPubMedCentral Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411–7431PubMedPubMedCentral
59.
go back to reference Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl 1):S11-15PubMed Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl 1):S11-15PubMed
60.
go back to reference Massen FK, Inauen CR, Harder LP, Runer A, Preiss S, Salzmann GM (2019) One-step autologous minced cartilage procedure for the treatment of knee joint chondral and osteochondral lesions: a series of 27 patients with 2-year follow-up. Orthop J Sports Med 7:2325967119853773PubMedPubMedCentral Massen FK, Inauen CR, Harder LP, Runer A, Preiss S, Salzmann GM (2019) One-step autologous minced cartilage procedure for the treatment of knee joint chondral and osteochondral lesions: a series of 27 patients with 2-year follow-up. Orthop J Sports Med 7:2325967119853773PubMedPubMedCentral
61.
go back to reference Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I (2014) Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res 472:1357–1364PubMed Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I (2014) Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res 472:1357–1364PubMed
62.
go back to reference Mehl J, Otto A, Baldino JB, Achtnich A, Akoto R, Imhoff AB et al (2019) The ACL-deficient knee and the prevalence of meniscus and cartilage lesions: a systematic review and meta-analysis (CRD42017076897). Arch Orthop Trauma Surg 139:819–841PubMed Mehl J, Otto A, Baldino JB, Achtnich A, Akoto R, Imhoff AB et al (2019) The ACL-deficient knee and the prevalence of meniscus and cartilage lesions: a systematic review and meta-analysis (CRD42017076897). Arch Orthop Trauma Surg 139:819–841PubMed
63.
go back to reference Michalitsis S, Vlychou M, Malizos KN, Thriskos P, Hantes ME (2015) Meniscal and articular cartilage lesions in the anterior cruciate ligament-deficient knee: correlation between time from injury and knee scores. Knee Surg Sports Traumatol Arthrosc 23:232–239PubMed Michalitsis S, Vlychou M, Malizos KN, Thriskos P, Hantes ME (2015) Meniscal and articular cartilage lesions in the anterior cruciate ligament-deficient knee: correlation between time from injury and knee scores. Knee Surg Sports Traumatol Arthrosc 23:232–239PubMed
64.
go back to reference Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37:902–908PubMed Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37:902–908PubMed
65.
go back to reference Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T (2010) Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 468:147–157PubMed Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T (2010) Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 468:147–157PubMed
66.
go back to reference Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR (2009) Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 37(Suppl 1):167S-176SPubMed Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR (2009) Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 37(Suppl 1):167S-176SPubMed
67.
go back to reference Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37:2053–2063PubMed Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37:2053–2063PubMed
68.
go back to reference Nehrer S, Spector M, Minas T (1999) Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 2:149–162 Nehrer S, Spector M, Minas T (1999) Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 2:149–162
69.
go back to reference Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116PubMed Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38:1110–1116PubMed
70.
go back to reference Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M et al (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23:426–435PubMed Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M et al (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group “Clinical Tissue Regeneration” of the German Society of Orthopaedics and Trauma (DGOU). Knee 23:426–435PubMed
71.
72.
go back to reference Niemeyer P, Feucht MJ, Fritz J, Albrecht D, Spahn G, Angele P (2016) Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 136:891–897PubMed Niemeyer P, Feucht MJ, Fritz J, Albrecht D, Spahn G, Angele P (2016) Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 136:891–897PubMed
73.
go back to reference Niemeyer P, Koestler W, Sudkamp NP (2011) Problems and complications of surgical techniques for treatment of full-thickness cartilage defects. Z Orthop Unfall 149:45–51PubMed Niemeyer P, Koestler W, Sudkamp NP (2011) Problems and complications of surgical techniques for treatment of full-thickness cartilage defects. Z Orthop Unfall 149:45–51PubMed
74.
go back to reference Niemeyer P, Kostler W, Salzmann GM, Lenz P, Kreuz PC, Sudkamp NP (2010) Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: A matched-pair analysis with 2-year follow-up. Am J Sports Med 38:2410–2416PubMed Niemeyer P, Kostler W, Salzmann GM, Lenz P, Kreuz PC, Sudkamp NP (2010) Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: A matched-pair analysis with 2-year follow-up. Am J Sports Med 38:2410–2416PubMed
75.
go back to reference Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, Fay J et al (2019) A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med 7:2325967119854442PubMedPubMedCentral Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, Fay J et al (2019) A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med 7:2325967119854442PubMedPubMedCentral
76.
go back to reference Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP et al (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099PubMed Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP et al (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091–2099PubMed
77.
go back to reference Niethammer T, Valentin S, Ficklscherer A, Gulecyuz M, Pietschmann M, Muller P (2015) Revision surgery after third generation autologous chondrocyte implantation in the knee. Int Orthop 39:1615–1622PubMed Niethammer T, Valentin S, Ficklscherer A, Gulecyuz M, Pietschmann M, Muller P (2015) Revision surgery after third generation autologous chondrocyte implantation in the knee. Int Orthop 39:1615–1622PubMed
78.
go back to reference Ogata Y, Mabuchi Y, Shinoda K, Horiike Y, Mizuno M, Otabe K et al (2018) Anterior cruciate ligament-derived mesenchymal stromal cells have a propensity to differentiate into the ligament lineage. Regen Ther 8:20–28PubMedPubMedCentral Ogata Y, Mabuchi Y, Shinoda K, Horiike Y, Mizuno M, Otabe K et al (2018) Anterior cruciate ligament-derived mesenchymal stromal cells have a propensity to differentiate into the ligament lineage. Regen Ther 8:20–28PubMedPubMedCentral
79.
go back to reference Pattappa G, Johnstone B, Zellner J, Docheva D, Angele P (2019) The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. Int J Mol Sci 20:4 Pattappa G, Johnstone B, Zellner J, Docheva D, Angele P (2019) The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. Int J Mol Sci 20:4
80.
go back to reference Pattappa G, Schewior R, Hofmeister I, Seja J, Zellner J, Johnstone B et al (2019) Physioxia has a beneficial effect on cartilage matrix production in interleukin-1 beta-inhibited mesenchymal stem cell chondrogenesis. Cells 8:123–134 Pattappa G, Schewior R, Hofmeister I, Seja J, Zellner J, Johnstone B et al (2019) Physioxia has a beneficial effect on cartilage matrix production in interleukin-1 beta-inhibited mesenchymal stem cell chondrogenesis. Cells 8:123–134
81.
go back to reference Pattappa G, Zellner J, Johnstone B, Docheva D, Angele P (2019) Cells under pressure - the relationship between hydrostatic pressure and mesenchymal stem cell chondrogenesis. Eur Cell Mater 37:360–381PubMed Pattappa G, Zellner J, Johnstone B, Docheva D, Angele P (2019) Cells under pressure - the relationship between hydrostatic pressure and mesenchymal stem cell chondrogenesis. Eur Cell Mater 37:360–381PubMed
82.
go back to reference Pestka JM, Bode G, Salzmann G, Steinwachs M, Schmal H, Sudkamp NP et al (2014) Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted? Am J Sports Med 42:208–215PubMed Pestka JM, Bode G, Salzmann G, Steinwachs M, Schmal H, Sudkamp NP et al (2014) Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted? Am J Sports Med 42:208–215PubMed
83.
go back to reference Pestka JM, Luu NH, Sudkamp NP, Angele P, Spahn G, Zinser W et al (2018) Revision surgery after cartilage repair: data from the german cartilage registry (KnorpelRegister DGOU). Orthop J Sports Med 6:2325967117752623PubMedPubMedCentral Pestka JM, Luu NH, Sudkamp NP, Angele P, Spahn G, Zinser W et al (2018) Revision surgery after cartilage repair: data from the german cartilage registry (KnorpelRegister DGOU). Orthop J Sports Med 6:2325967117752623PubMedPubMedCentral
84.
go back to reference Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30:2–12PubMed Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30:2–12PubMed
85.
go back to reference Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 3:212–234 Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 3:212–234
86.
go back to reference Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124PubMed Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124PubMed
87.
go back to reference Pietschmann MF, Horng A, Niethammer T, Pagenstert I, Sievers B, Jansson V et al (2009) Cell quality affects clinical outcome after MACI procedure for cartilage injury of the knee. Knee Surg Sports Traumatol Arthrosc 17:1305–1311PubMed Pietschmann MF, Horng A, Niethammer T, Pagenstert I, Sievers B, Jansson V et al (2009) Cell quality affects clinical outcome after MACI procedure for cartilage injury of the knee. Knee Surg Sports Traumatol Arthrosc 17:1305–1311PubMed
88.
go back to reference Pietschmann MF, Niethammer TR, Horng A, Gulecyuz MF, Feist-Pagenstert I, Jansson V et al (2012) The incidence and clinical relevance of graft hypertrophy after matrix-based autologous chondrocyte implantation. Am J Sports Med 40:68–74PubMed Pietschmann MF, Niethammer TR, Horng A, Gulecyuz MF, Feist-Pagenstert I, Jansson V et al (2012) The incidence and clinical relevance of graft hypertrophy after matrix-based autologous chondrocyte implantation. Am J Sports Med 40:68–74PubMed
89.
go back to reference Prager P, Kunz M, Ebert R, Klein-Hitpass L, Sieker J, Barthel T et al (2018) Mesenchymal stem cells isolated from the anterior cruciate ligament: characterization and comparison of cells from young and old donors. Knee Surg Relat Res 30:193–205PubMedPubMedCentral Prager P, Kunz M, Ebert R, Klein-Hitpass L, Sieker J, Barthel T et al (2018) Mesenchymal stem cells isolated from the anterior cruciate ligament: characterization and comparison of cells from young and old donors. Knee Surg Relat Res 30:193–205PubMedPubMedCentral
90.
go back to reference Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529PubMed Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529PubMed
91.
go back to reference Schagemann J, Behrens P, Paech A, Riepenhof H, Kienast B, Mittelstadt H et al (2018) Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. Arch Orthop Trauma Surg 138:819–825PubMed Schagemann J, Behrens P, Paech A, Riepenhof H, Kienast B, Mittelstadt H et al (2018) Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. Arch Orthop Trauma Surg 138:819–825PubMed
92.
go back to reference Schuette HB, Kraeutler MJ, McCarty EC (2017) Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthop J Sports Med 5:2325967117709250PubMedPubMedCentral Schuette HB, Kraeutler MJ, McCarty EC (2017) Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthop J Sports Med 5:2325967117709250PubMedPubMedCentral
94.
go back to reference Sekiya I, Muneta T, Horie M, Koga H (2015) Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res 473:2316–2326PubMedPubMedCentral Sekiya I, Muneta T, Horie M, Koga H (2015) Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res 473:2316–2326PubMedPubMedCentral
95.
go back to reference Sellards RA, Nho SJ, Cole BJ (2002) Chondral injuries. Curr Opin Rheumatol 14:134–141PubMed Sellards RA, Nho SJ, Cole BJ (2002) Chondral injuries. Curr Opin Rheumatol 14:134–141PubMed
96.
go back to reference Silva A, Sampaio R, Fernandes R, Pinto E (2014) Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 22:66–71PubMed Silva A, Sampaio R, Fernandes R, Pinto E (2014) Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 22:66–71PubMed
97.
go back to reference Smillie IS (1957) Treatment of osteochondritis dissecans. J Bone Joint Surg Br 39:248–260PubMed Smillie IS (1957) Treatment of osteochondritis dissecans. J Bone Joint Surg Br 39:248–260PubMed
98.
go back to reference Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484PubMed Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19:477–484PubMed
100.
go back to reference Vangsness CT Jr, Farr J 2nd, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M (2014) Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am 96:90–98PubMed Vangsness CT Jr, Farr J 2nd, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M (2014) Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am 96:90–98PubMed
101.
go back to reference Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP et al (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574PubMed Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP et al (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574PubMed
102.
go back to reference Vavken P, Samartzis D (2010) Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials. Osteoarthritis Cartilage 18:857–863PubMed Vavken P, Samartzis D (2010) Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials. Osteoarthritis Cartilage 18:857–863PubMed
103.
go back to reference Volz M, Schaumburger J, Frick H, Grifka J, Anders S (2017) A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at 5 years. Int Orthop 41:797–804PubMed Volz M, Schaumburger J, Frick H, Grifka J, Anders S (2017) A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at 5 years. Int Orthop 41:797–804PubMed
104.
go back to reference Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W, Brady K et al (2017) Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med 6:1237–1248PubMed Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W, Brady K et al (2017) Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med 6:1237–1248PubMed
105.
go back to reference Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14:177–182PubMed Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14:177–182PubMed
106.
go back to reference Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P et al (2009) A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the study of the treatment of articular repair (STAR) clinical trial. Am J Sports Med 37:42–55PubMed Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P et al (2009) A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the study of the treatment of articular repair (STAR) clinical trial. Am J Sports Med 37:42–55PubMed
107.
go back to reference Zellner J, Angele P, Zeman F, Kujat R, Nerlich M (2013) Is the transplant quality at the time of surgery adequate for matrix-guided autologous cartilage transplantation? A pilot study. Clin Orthop Relat Res 471:2852–2861PubMedPubMedCentral Zellner J, Angele P, Zeman F, Kujat R, Nerlich M (2013) Is the transplant quality at the time of surgery adequate for matrix-guided autologous cartilage transplantation? A pilot study. Clin Orthop Relat Res 471:2852–2861PubMedPubMedCentral
108.
go back to reference Zellner J, Grechenig S, Pfeifer CG, Krutsch W, Koch M, Welsch G et al (2017) Clinical and radiological regeneration of large and deep osteochondral defects of the knee by bone augmentation combined with matrix-guided autologous chondrocyte transplantation. Am J Sports Med 45:3069–3080PubMed Zellner J, Grechenig S, Pfeifer CG, Krutsch W, Koch M, Welsch G et al (2017) Clinical and radiological regeneration of large and deep osteochondral defects of the knee by bone augmentation combined with matrix-guided autologous chondrocyte transplantation. Am J Sports Med 45:3069–3080PubMed
109.
go back to reference Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T et al (2013) Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater 101:1133–1142PubMed Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T et al (2013) Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater 101:1133–1142PubMed
110.
go back to reference Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M et al (2010) Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A 94:1150–1161PubMed Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M et al (2010) Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A 94:1150–1161PubMed
111.
go back to reference Zellner J, Pattappa G, Koch M, Lang S, Weber J, Pfeifer CG et al (2017) Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation? Stem Cell Res Ther 8:225PubMedPubMedCentral Zellner J, Pattappa G, Koch M, Lang S, Weber J, Pfeifer CG et al (2017) Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation? Stem Cell Res Ther 8:225PubMedPubMedCentral
Metadata
Title
Cell-based treatment options facilitate regeneration of cartilage, ligaments and meniscus in demanding conditions of the knee by a whole joint approach
Authors
Peter Angele
Denitsa Docheva
Girish Pattappa
Johannes Zellner
Publication date
01-04-2022
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 4/2022
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-021-06497-9

Other articles of this Issue 4/2022

Knee Surgery, Sports Traumatology, Arthroscopy 4/2022 Go to the issue