Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Oseltamivir | Research article

Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus

Authors: Parvaneh Mehrbod, Hanieh Safari, Zeinab Mollai, Fatemeh Fotouhi, Yasaman Mirfakhraei, Hanieh Entezari, Saied Goodarzi, Zahra Tofighi

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

Influenza A virus (IAV) infection is a continual threat to the health of animals and humans globally. Consumption of the conventional drugs has shown several side effects and drug resistance. This study was aimed to screen some Iranian medicinal plants extracts and their fractions against influenza A virus.

Methods

Glycyrrhiza glabra (rhizome), Myrtus  commonis (leaves), Melissa officinalis (leaves), Hypericum perforatum (aerial parts), Tilia platyphyllos (flower), Salix alba (bark), and Camellia sinensis (green and fermented leaves) were extracted with 80% methanol and fractionated with chloroform and methanol, respectively. The cytotoxicity of the compounds were determined by MTT colorimetric assay on MDCK cells. The effective concentrations (EC50) of the compounds were calculated from the MTT results compared to the negative control with no significant effects on cell viability. The effects of EC50 of the compounds on viral surface glycoproteins and viral titer were tested by HI and HA virological assays, respectively and compared with oseltamivir and amantadine. Preliminary phytochemical analysis were done for promising anti-IAV extracts and fractions.

Results

The most effective samples against IAV titer (P ≤ 0.05) were crude extracts of G. glabra, M. officinalis and S. alba; methanol fractions of M. communis and M. officinalis; and chloroform fractions of M. communis and C. sinensis (fermented) mostly in co- and pre-penetration combined treatments. The potential extracts and fractions were rich in flavonoids, tannins, steroids and triterpenoids.

Conclusion

The outcomes confirmed a scientific basis for anti-influenza A virus capacity of the extracts and fractions from the selected plants for the first time, and correlated their effects with their phytochemical constituents. It is worth focusing on elucidating pure compounds and identifying their mechanism(s) of action.
Appendix
Available only for authorised users
Literature
4.
go back to reference Scholtissek C, Quack G, Klenk HD, Webster RG. How to overcome resistance of influenza A viruses against adamantane derivatives. Antiviral Res. 1998;37:83–95.PubMedCrossRef Scholtissek C, Quack G, Klenk HD, Webster RG. How to overcome resistance of influenza A viruses against adamantane derivatives. Antiviral Res. 1998;37:83–95.PubMedCrossRef
5.
go back to reference Saladino R, Barontini M, Nencioni M, Sgarbanti R, Palamara AT. Current advances in anti-influenza therapy. Curr Med Chem. 2010;17:2101–40.PubMedCrossRef Saladino R, Barontini M, Nencioni M, Sgarbanti R, Palamara AT. Current advances in anti-influenza therapy. Curr Med Chem. 2010;17:2101–40.PubMedCrossRef
7.
go back to reference Pathumwadee I, Chittima L, Thanyada R, Arthorn L, Maturos M, Panita D, et al. How amantadine and rimantadine inhibit proton transport in the M2 protein channel. J Mol Graph Model. 2008;27:342–8.CrossRef Pathumwadee I, Chittima L, Thanyada R, Arthorn L, Maturos M, Panita D, et al. How amantadine and rimantadine inhibit proton transport in the M2 protein channel. J Mol Graph Model. 2008;27:342–8.CrossRef
8.
go back to reference Sarah CD, Hong M. Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. P Natl Acad Sci USA. 2008;105:1483–8.CrossRef Sarah CD, Hong M. Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel. P Natl Acad Sci USA. 2008;105:1483–8.CrossRef
9.
go back to reference Arakawa T, Yamasaki H, Ikeda K, Ejima D, Naito T, Koyama AH. Antiviral and virucidal activities of natural product. Curr Med Chem. 2009;16:2485–97.PubMedCrossRef Arakawa T, Yamasaki H, Ikeda K, Ejima D, Naito T, Koyama AH. Antiviral and virucidal activities of natural product. Curr Med Chem. 2009;16:2485–97.PubMedCrossRef
10.
go back to reference Khalafalla MM, Abdellatef E, Dafalla HM, Nassrallah AA, Aboul-Enein KM, Lightfoot DA, et al. Active principle from moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr J Biotechnol. 2010;9:8467–71. Khalafalla MM, Abdellatef E, Dafalla HM, Nassrallah AA, Aboul-Enein KM, Lightfoot DA, et al. Active principle from moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. Afr J Biotechnol. 2010;9:8467–71.
11.
go back to reference Goodarzi S, Nateghpour M, Asgharian P, Hadjiakhoondi A, Yassa N, Tavakoli S, et al. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract. Iran J Basic Med Sci. 2017;20:1318–23.PubMedPubMedCentral Goodarzi S, Nateghpour M, Asgharian P, Hadjiakhoondi A, Yassa N, Tavakoli S, et al. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract. Iran J Basic Med Sci. 2017;20:1318–23.PubMedPubMedCentral
12.
go back to reference Aqil F, Ahmad I, Mehmood Z. Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk J Biology. 2006;30:177–83. Aqil F, Ahmad I, Mehmood Z. Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk J Biology. 2006;30:177–83.
13.
go back to reference Kang Q, Wang Y, Cui Q, Gong L, Yang Y, Jiang H, et al. Screening for anti-influenza actives of orefractionated traditional Chinese medicines. Evid Based Complement Alternat Med. 2020;2020:4979850.PubMedPubMedCentralCrossRef Kang Q, Wang Y, Cui Q, Gong L, Yang Y, Jiang H, et al. Screening for anti-influenza actives of orefractionated traditional Chinese medicines. Evid Based Complement Alternat Med. 2020;2020:4979850.PubMedPubMedCentralCrossRef
14.
go back to reference Shahzad MI, Ashraf H, Aslam A, Parveen S, Kamran Z, Naz N, et al. REPORT- Some ethanobotanically important plants from Cholistan area for anti avian influenza virus (AIV) H9N2 screening. Pak J Pharm Sci. 2019;32:2751–6.PubMed Shahzad MI, Ashraf H, Aslam A, Parveen S, Kamran Z, Naz N, et al. REPORT- Some ethanobotanically important plants from Cholistan area for anti avian influenza virus (AIV) H9N2 screening. Pak J Pharm Sci. 2019;32:2751–6.PubMed
15.
go back to reference Karber G. 50% endpoint calculation. Arch Exp Pathol Pharmacol. 1931;162:480–3. Karber G. 50% endpoint calculation. Arch Exp Pathol Pharmacol. 1931;162:480–3.
16.
go back to reference Mehrbod P, Abdalla MA, Njoya EM, Ahmed AS, Fotouhi F, Farahmand B, et al. South African medicinal plant extracts active against influenza A virus. BMC CAM. 2018;18:1–10. Mehrbod P, Abdalla MA, Njoya EM, Ahmed AS, Fotouhi F, Farahmand B, et al. South African medicinal plant extracts active against influenza A virus. BMC CAM. 2018;18:1–10.
17.
go back to reference Chattopadhyay D, Sarkar MC, Chatterjee T, Sharma Dey R, Bag P, Chakraborti S, et al. Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnol. 2009;25:347–68.CrossRef Chattopadhyay D, Sarkar MC, Chatterjee T, Sharma Dey R, Bag P, Chakraborti S, et al. Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnol. 2009;25:347–68.CrossRef
18.
go back to reference Shigeta S, Shuichi M, Junko W, Shu S, Kauzo T, Yamase T. Synergistic antiinfluenza virus A (H1N1) activities of PM-523 (Polyoxomatalate) and Ribavirin in vitro and in vivo. Antimicrob Agents Ch. 1997;41:423–1427.CrossRef Shigeta S, Shuichi M, Junko W, Shu S, Kauzo T, Yamase T. Synergistic antiinfluenza virus A (H1N1) activities of PM-523 (Polyoxomatalate) and Ribavirin in vitro and in vivo. Antimicrob Agents Ch. 1997;41:423–1427.CrossRef
20.
go back to reference Rimjhim S, Kumari N, Jainendra K. Preliminary phytochemical screening of methanolic extract of clerodendron infortunatum. IOSR J Appl Chem. 2014;7:10–3.CrossRef Rimjhim S, Kumari N, Jainendra K. Preliminary phytochemical screening of methanolic extract of clerodendron infortunatum. IOSR J Appl Chem. 2014;7:10–3.CrossRef
21.
go back to reference Heshmati Afshar F, Delazar A, Asnaashari S, Vaez H, Zolali E, Asgharian P. Screening of anti-malarial activity of different extracts obtained from three species of Scrophularia growing in Iran. Iran J Pharm Res. 2018;17:668–76.PubMedPubMedCentral Heshmati Afshar F, Delazar A, Asnaashari S, Vaez H, Zolali E, Asgharian P. Screening of anti-malarial activity of different extracts obtained from three species of Scrophularia growing in Iran. Iran J Pharm Res. 2018;17:668–76.PubMedPubMedCentral
22.
go back to reference Camargo F, Cortez DA, Ueda NT, Nakamura CV, Dias Filho BP. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine. 2008;15:202–8.CrossRef Camargo F, Cortez DA, Ueda NT, Nakamura CV, Dias Filho BP. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine. 2008;15:202–8.CrossRef
23.
go back to reference Choi HJ, Lim CH, Song JH, Baek SH, Kwon DH. Antiviral activity of raoulic acid from Raoulia australis against picornaviruses. Phytomedicine. 2009;16:35–9.PubMedCrossRef Choi HJ, Lim CH, Song JH, Baek SH, Kwon DH. Antiviral activity of raoulic acid from Raoulia australis against picornaviruses. Phytomedicine. 2009;16:35–9.PubMedCrossRef
24.
go back to reference Rajasekaran D, Palombo EA, Chia Yeo T, Lim Siok Ley D, Lee Tu C, Malherbe F, et al. Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS ONE. 2013;8:e79293.PubMedPubMedCentralCrossRef Rajasekaran D, Palombo EA, Chia Yeo T, Lim Siok Ley D, Lee Tu C, Malherbe F, et al. Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS ONE. 2013;8:e79293.PubMedPubMedCentralCrossRef
25.
go back to reference Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al. Attenuation of influenza virus infectivity with herbal-marine compound (HESA-A): an in vitro study in MDCK cells. Virol J. 2012;9:44.PubMedPubMedCentralCrossRef Mehrbod P, Ideris A, Omar AR, Hair-Bejo M, Tan SW, Kheiri MT, et al. Attenuation of influenza virus infectivity with herbal-marine compound (HESA-A): an in vitro study in MDCK cells. Virol J. 2012;9:44.PubMedPubMedCentralCrossRef
26.
go back to reference Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008;22:141–8.PubMedCrossRef Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008;22:141–8.PubMedCrossRef
27.
go back to reference Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, et al. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod. 2014;77:563–70.PubMedCrossRef Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, et al. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod. 2014;77:563–70.PubMedCrossRef
28.
go back to reference Clement Y, Leung PC. Effects of a polyherbal formula on influenza-like syndrome and immune responses. Focus Altern Complement Ther. 2013;18:207–8.CrossRef Clement Y, Leung PC. Effects of a polyherbal formula on influenza-like syndrome and immune responses. Focus Altern Complement Ther. 2013;18:207–8.CrossRef
29.
go back to reference Wong LY, Leung PC, Pang SY, Cheng KF, Wong CK, Lam WK, et al. A herbal formula for prevention of influenza-like syndrome: A double-blind randomized clinical trial. Chin J Integr Med. 2013;19:253–9.PubMedPubMedCentralCrossRef Wong LY, Leung PC, Pang SY, Cheng KF, Wong CK, Lam WK, et al. A herbal formula for prevention of influenza-like syndrome: A double-blind randomized clinical trial. Chin J Integr Med. 2013;19:253–9.PubMedPubMedCentralCrossRef
30.
go back to reference Pourghanbari G, Nili H, Moattari A, Mohammadi A, Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Virusdisease. 2016;27:170–8.PubMedPubMedCentralCrossRef Pourghanbari G, Nili H, Moattari A, Mohammadi A, Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Virusdisease. 2016;27:170–8.PubMedPubMedCentralCrossRef
31.
go back to reference Jalali P, Moattari A, Mohammadi A, Ghazanfari N, Pourghanbari G. Melissa officinalis efficacy against human influenza virus (New H1N1) in comparison with oseltamivir. Asian Pac J Trop Dis. 2016;6:714–7.CrossRef Jalali P, Moattari A, Mohammadi A, Ghazanfari N, Pourghanbari G. Melissa officinalis efficacy against human influenza virus (New H1N1) in comparison with oseltamivir. Asian Pac J Trop Dis. 2016;6:714–7.CrossRef
32.
go back to reference Pu XY, Liang JP, Wang XH, Xu T, Hua LY, Shang RF, et al. Anti-influenza A virus effect of Hypericum perforatum L. extract. Virologica Sinica. 2009;24:19.CrossRef Pu XY, Liang JP, Wang XH, Xu T, Hua LY, Shang RF, et al. Anti-influenza A virus effect of Hypericum perforatum L. extract. Virologica Sinica. 2009;24:19.CrossRef
33.
go back to reference Huang N, Singh N, Yoon K, Loiacono CM, Kohut ML, Birt DF. The immuno-regulatory impact of orally-administered Hypericum perforatum extract on Balb/C mice inoculated with H1n1 influenza A virus. PLoS ONE. 2013;8:e76491.PubMedPubMedCentralCrossRef Huang N, Singh N, Yoon K, Loiacono CM, Kohut ML, Birt DF. The immuno-regulatory impact of orally-administered Hypericum perforatum extract on Balb/C mice inoculated with H1n1 influenza A virus. PLoS ONE. 2013;8:e76491.PubMedPubMedCentralCrossRef
34.
go back to reference Lee HJ, Lee YN, Youn HN, Lee DH, Kwak JH, Seong BL, et al. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poult Sci. 2012;91:66–73.PubMedCrossRef Lee HJ, Lee YN, Youn HN, Lee DH, Kwak JH, Seong BL, et al. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poult Sci. 2012;91:66–73.PubMedCrossRef
35.
go back to reference Yang ZF, Bai LP, Huang WB, Li X-Z, Zhao SS, Zhong NS, et al. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia. 2014;93:47–53.PubMedCrossRef Yang ZF, Bai LP, Huang WB, Li X-Z, Zhao SS, Zhong NS, et al. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia. 2014;93:47–53.PubMedCrossRef
36.
go back to reference Zu M, Yang F, Zhou W, Liu A, Du G, Zheng L. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antiviral Res. 2012;94:217–24.PubMedCrossRef Zu M, Yang F, Zhou W, Liu A, Du G, Zheng L. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antiviral Res. 2012;94:217–24.PubMedCrossRef
37.
go back to reference Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: A randomized controlled trial. BMC CAM. 2011;11:1–7. Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: A randomized controlled trial. BMC CAM. 2011;11:1–7.
38.
go back to reference Rowe CA, Nantz MP, Bukowski JF, Percival SS. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma,delta T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr. 2007;26:445–52.PubMedCrossRef Rowe CA, Nantz MP, Bukowski JF, Percival SS. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma,delta T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr. 2007;26:445–52.PubMedCrossRef
39.
go back to reference Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4 → 8)catechin (procyanidin). J Agric Food Chem. 1998;46:2590–5.CrossRef Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4 → 8)catechin (procyanidin). J Agric Food Chem. 1998;46:2590–5.CrossRef
40.
go back to reference Liang-Tzung L, Ting-Ying C, Song-Chow L, Chueh-Yao C, Ta-Chen L, Guey-Horng W, et al. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 2013;13:45. Liang-Tzung L, Ting-Ying C, Song-Chow L, Chueh-Yao C, Ta-Chen L, Guey-Horng W, et al. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 2013;13:45.
42.
go back to reference Cheng PKC, Leung TWC, Ho ECM, Leung PCK, Ng AYY, Lai MYY, et al. Oseltamivir- and amantadine-resistant influenza viruses A (H1N1). Emerg Infect Diseases. 2009;15:966–8.CrossRef Cheng PKC, Leung TWC, Ho ECM, Leung PCK, Ng AYY, Lai MYY, et al. Oseltamivir- and amantadine-resistant influenza viruses A (H1N1). Emerg Infect Diseases. 2009;15:966–8.CrossRef
43.
go back to reference Tsang N, Zhao L, Tsang S, Zhang H. Antiviral activity and molecular targets of plant natural products against avian influenza virus. Curr Org Chem. 2017;21:1777–804.CrossRef Tsang N, Zhao L, Tsang S, Zhang H. Antiviral activity and molecular targets of plant natural products against avian influenza virus. Curr Org Chem. 2017;21:1777–804.CrossRef
44.
go back to reference Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, et al. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. Molecules. 2020;25:E4878.PubMedCrossRef Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, et al. Bioactive natural antivirals: An updated review of the available plants and isolated molecules. Molecules. 2020;25:E4878.PubMedCrossRef
45.
go back to reference Zhang J, Wang Y. Bilobetin, a novel small molecule inhibitor targeting influenza virus polymerase acidic (PA) endonuclease was screened from plant extracts. Nat Prod Res. 2020;21:1–4. Zhang J, Wang Y. Bilobetin, a novel small molecule inhibitor targeting influenza virus polymerase acidic (PA) endonuclease was screened from plant extracts. Nat Prod Res. 2020;21:1–4.
46.
go back to reference Diniz LRL, Bezerra Filho CSM, Fielding BC, de Sousa DP. Natural antioxidants: A review of studies on human and animal coronavirus. Oxid Med Cell Longev. 2020;2020:3173281.PubMedPubMedCentralCrossRef Diniz LRL, Bezerra Filho CSM, Fielding BC, de Sousa DP. Natural antioxidants: A review of studies on human and animal coronavirus. Oxid Med Cell Longev. 2020;2020:3173281.PubMedPubMedCentralCrossRef
47.
go back to reference Sadati SM, Gheibi N, Ranjbar S, Hashemzadeh MS. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomed Rep. 2019;10:33–8.PubMed Sadati SM, Gheibi N, Ranjbar S, Hashemzadeh MS. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomed Rep. 2019;10:33–8.PubMed
48.
go back to reference Liu AL, Wang HD, Lee SM, Wang YT, Du GH. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16:7141–7.PubMedCrossRef Liu AL, Wang HD, Lee SM, Wang YT, Du GH. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16:7141–7.PubMedCrossRef
49.
go back to reference Yu M, Si L, Wang YT, Wu Y, Yu F, Jiao P, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses. J Med Chem. 2014;57:10058–71.PubMedCrossRef Yu M, Si L, Wang YT, Wu Y, Yu F, Jiao P, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses. J Med Chem. 2014;57:10058–71.PubMedCrossRef
50.
go back to reference Xiao S, Tian Z, Wang YT, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:951–76.PubMedPubMedCentralCrossRef Xiao S, Tian Z, Wang YT, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:951–76.PubMedPubMedCentralCrossRef
51.
go back to reference Vil VA, Terent’ev AO, Savidov N, Gloriozova TA, Poroikov VV, Pounina TA, et al. Hydroperoxy steroids and triterpenoids derived from plant and fungi: Origin, structures and biological activities. J Steroid Biochem Mol Biol. 2019;190:76–87.PubMedCrossRef Vil VA, Terent’ev AO, Savidov N, Gloriozova TA, Poroikov VV, Pounina TA, et al. Hydroperoxy steroids and triterpenoids derived from plant and fungi: Origin, structures and biological activities. J Steroid Biochem Mol Biol. 2019;190:76–87.PubMedCrossRef
52.
go back to reference Ruikun D, Qinghua C, Lijun R. Competitive cooperation of hemagglutinin and neuraminidase during influenza A virus entry. Viruses. 2019;11:458.CrossRef Ruikun D, Qinghua C, Lijun R. Competitive cooperation of hemagglutinin and neuraminidase during influenza A virus entry. Viruses. 2019;11:458.CrossRef
53.
go back to reference Mercader AG, Pomilio AB. Study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem. 2010;45:1724–30.PubMedCrossRef Mercader AG, Pomilio AB. Study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem. 2010;45:1724–30.PubMedCrossRef
Metadata
Title
Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus
Authors
Parvaneh Mehrbod
Hanieh Safari
Zeinab Mollai
Fatemeh Fotouhi
Yasaman Mirfakhraei
Hanieh Entezari
Saied Goodarzi
Zahra Tofighi
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03423-x

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue