Skip to main content
Top

26-03-2024 | Orthopantomogram | Review Article

Accuracy of machine learning in the diagnosis of odontogenic cysts and tumors: a systematic review and meta-analysis

Authors: Priyanshu Kumar Shrivastava, Shamimul Hasan, Laraib Abid, Ranjit Injety, Ayush Kumar Shrivastav, Deborah Sybil

Published in: Oral Radiology

Login to get access

Abstract

Background

The recent impact of artificial intelligence in diagnostic services has been enormous. Machine learning tools offer an innovative alternative to diagnose cysts and tumors radiographically that pose certain challenges due to the near similar presentation, anatomical variations, and superimposition. It is crucial that the performance of these models is evaluated for their clinical applicability in diagnosing cysts and tumors.

Methods

A comprehensive literature search was carried out on eminent databases for published studies between January 2015 and December 2022. Studies utilizing machine learning models in the diagnosis of odontogenic cysts or tumors using Orthopantomograms (OPG) or Cone Beam Computed Tomographic images (CBCT) were included. QUADAS-2 tool was used for the assessment of the risk of bias and applicability concerns. Meta-analysis was performed for studies reporting sufficient performance metrics, separately for OPG and CBCT.

Results

16 studies were included for qualitative synthesis including a total of 10,872 odontogenic cysts and tumors. The sensitivity and specificity of machine learning in diagnosing cysts and tumors through OPG were 0.83 (95% CI 0.81–0.85) and 0.82 (95% CI 0.81–0.83) respectively. Studies utilizing CBCT noted a sensitivity of 0.88 (95% CI 0.87–0.88) and specificity of 0.88 (95% CI 0.87–0.89). Highest classification accuracy was 100%, noted for Support Vector Machine classifier.

Conclusion

The results from the present review favoured machine learning models to be used as a clinical adjunct in the radiographic diagnosis of odontogenic cysts and tumors, provided they undergo robust training with a huge dataset. However, the arduous process, investment, and certain ethical concerns associated with the total dependence on technology must be taken into account. Standardized reporting of outcomes for diagnostic studies utilizing machine learning methods is recommended to ensure homogeneity in assessment criteria, facilitate comparison between different studies, and promote transparency in research findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alexander B, John S. Artificial intelligence in dentistry: current concepts and a peep into the future. Int J Adv Res. 2018;6(12):1105–8.CrossRef Alexander B, John S. Artificial intelligence in dentistry: current concepts and a peep into the future. Int J Adv Res. 2018;6(12):1105–8.CrossRef
2.
go back to reference Kareem SA, Pozos-Parra P, Wilson N. An application of belief merging for the diagnosis of oral cancer. Appl Soft Comput J. 2017;61:1105–12.CrossRef Kareem SA, Pozos-Parra P, Wilson N. An application of belief merging for the diagnosis of oral cancer. Appl Soft Comput J. 2017;61:1105–12.CrossRef
3.
go back to reference Corbella S, Srinivas S, Cabitza F. Applications of deep learning in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):225–38.CrossRefPubMed Corbella S, Srinivas S, Cabitza F. Applications of deep learning in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):225–38.CrossRefPubMed
4.
5.
go back to reference Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela O, et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel). 2020;10(6):430.CrossRefPubMed Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela O, et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel). 2020;10(6):430.CrossRefPubMed
6.
go back to reference Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.CrossRefPubMed Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.CrossRefPubMed
8.
go back to reference Yu M, Yan H, Xia J, et al. Deep convolutional neural networks for tongue squamous cell carcinoma classification using Raman spectroscopy. Photodiagn Photodyn Ther. 2019;26:430–5.CrossRef Yu M, Yan H, Xia J, et al. Deep convolutional neural networks for tongue squamous cell carcinoma classification using Raman spectroscopy. Photodiagn Photodyn Ther. 2019;26:430–5.CrossRef
9.
go back to reference Bittencourt MAV, Sá Mafra PHd, Julia RS, Travençolo BAN, Silva PUJ, Blumenberg C, et al. Accuracy of computer-aided image analysis in the diagnosis of odontogenic cysts: a systematic review. Med Oral Patol Oral Cir Bucal. 2021;26(3):e368–78. Bittencourt MAV, Sá Mafra PHd, Julia RS, Travençolo BAN, Silva PUJ, Blumenberg C, et al. Accuracy of computer-aided image analysis in the diagnosis of odontogenic cysts: a systematic review. Med Oral Patol Oral Cir Bucal. 2021;26(3):e368–78.
10.
go back to reference McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018;319(4):388–96.CrossRefPubMed McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA. 2018;319(4):388–96.CrossRefPubMed
11.
go back to reference Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.
12.
go back to reference Plana MN, Arevalo-Rodriguez I, Fernández-García S, Soto J, Fabregate M, Pérez T, Roqué M, Zamora J. Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy data. BMC Med Res Methodol. 2022;22(1):306. Plana MN, Arevalo-Rodriguez I, Fernández-García S, Soto J, Fabregate M, Pérez T, Roqué M, Zamora J. Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy data. BMC Med Res Methodol. 2022;22(1):306.
13.
go back to reference Abdolali F, Zoroofi RA, Otake Y, Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Prog Biomed. 2017;139:197–207.CrossRef Abdolali F, Zoroofi RA, Otake Y, Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics. Comput Methods Prog Biomed. 2017;139:197–207.CrossRef
14.
go back to reference Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(4):424–30.CrossRefPubMed Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(4):424–30.CrossRefPubMed
15.
go back to reference Bispo MS, Pierre Júnior ML, Apolinário AL Jr, Dos Santos JN, Junior BC, Neves FS, Crusoé-Rebello I. Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network. Dentomaxillofacial Radiol. 2021;50(7):20210002.CrossRef Bispo MS, Pierre Júnior ML, Apolinário AL Jr, Dos Santos JN, Junior BC, Neves FS, Crusoé-Rebello I. Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network. Dentomaxillofacial Radiol. 2021;50(7):20210002.CrossRef
16.
go back to reference Chai ZK, Mao L, Chen H, Sun TG, Shen XM, Liu J, Sun ZJ. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence. Front Oncol. 2022;11:5935.CrossRef Chai ZK, Mao L, Chen H, Sun TG, Shen XM, Liu J, Sun ZJ. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence. Front Oncol. 2022;11:5935.CrossRef
17.
go back to reference Feher B, Kuchler U, Schwendicke F, Schneider L, Cejudo Grano de Oro JE, Xi T, Vinayahalingam S, Hsu TM, Brinz J, Chaurasia A, Dhingra K. Emulating clinical diagnostic reasoning for jaw cysts with machine learning. Diagnostics. 2022;12(8):1968. Feher B, Kuchler U, Schwendicke F, Schneider L, Cejudo Grano de Oro JE, Xi T, Vinayahalingam S, Hsu TM, Brinz J, Chaurasia A, Dhingra K. Emulating clinical diagnostic reasoning for jaw cysts with machine learning. Diagnostics. 2022;12(8):1968.
18.
go back to reference Kwon O, Yong TH, Kang SR, Kim JE, Huh KH, Heo MS, Lee SS, Choi SC, Yi WJ. Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofacial Radiol. 2020;49(8):20200185.CrossRef Kwon O, Yong TH, Kang SR, Kim JE, Huh KH, Heo MS, Lee SS, Choi SC, Yi WJ. Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofacial Radiol. 2020;49(8):20200185.CrossRef
19.
go back to reference Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020;26(1):152–8.CrossRefPubMed Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020;26(1):152–8.CrossRefPubMed
20.
go back to reference Lee A, Kim MS, Han SS, Park P, Lee C, Yun JP. Deep learning neural networks to differentiate Stafne’s bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS ONE. 2021;16(7): e0254997.CrossRefPubMedPubMedCentral Lee A, Kim MS, Han SS, Park P, Lee C, Yun JP. Deep learning neural networks to differentiate Stafne’s bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS ONE. 2021;16(7): e0254997.CrossRefPubMedPubMedCentral
21.
go back to reference Liu Z, Liu J, Zhou Z, Zhang Q, Wu H, Zhai G, Han J. Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs. Int J Comput Assist Radiol Surg. 2021;16:415–22.CrossRefPubMedPubMedCentral Liu Z, Liu J, Zhou Z, Zhang Q, Wu H, Zhai G, Han J. Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs. Int J Comput Assist Radiol Surg. 2021;16:415–22.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Sivasundaram S, Pandian C. Performance analysis of classification and segmentation of cysts in panoramic dental images using convolutional neural network architecture. Int J Imaging Syst Technol. 2021;31(4):2214–25. Sivasundaram S, Pandian C. Performance analysis of classification and segmentation of cysts in panoramic dental images using convolutional neural network architecture. Int J Imaging Syst Technol. 2021;31(4):2214–25.
24.
go back to reference Watanabe H, Ariji Y, Fukuda M, Kuwada C, Kise Y, Nozawa M, Sugita Y, Ariji E. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2021;37:487–93. Watanabe H, Ariji Y, Fukuda M, Kuwada C, Kise Y, Nozawa M, Sugita Y, Ariji E. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2021;37:487–93.
25.
go back to reference Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, Kim JY, Kim JK, Kim YH, Oh TG, Han SS. Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med. 2020;9(6):1839.CrossRefPubMedPubMedCentral Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, Kim JY, Kim JK, Kim YH, Oh TG, Han SS. Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med. 2020;9(6):1839.CrossRefPubMedPubMedCentral
26.
go back to reference Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Prog Biomed. 2017;146:91–100.CrossRef Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Prog Biomed. 2017;146:91–100.CrossRef
27.
go back to reference Yong TH, Lee SJ, Yi WJ. Odontogenic cysts and tumors detection in panoramic radiographs using Deep Convolutional Neural Network (DCNN). Medical imaging with deep learning. 2019. Yong TH, Lee SJ, Yi WJ. Odontogenic cysts and tumors detection in panoramic radiographs using Deep Convolutional Neural Network (DCNN). Medical imaging with deep learning. 2019.
28.
30.
go back to reference Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020;49(1):20190107. https://doi.org/10.1259/dmfr.20190107. Epub 2019 Aug 14. PMID: 31386555; PMCID: PMC6957072. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020;49(1):20190107. https://​doi.​org/​10.​1259/​dmfr.​20190107. Epub 2019 Aug 14. PMID: 31386555; PMCID: PMC6957072.
31.
go back to reference Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JW, Kostikas K, Price D, Reddel HK, Tsiligianni I, Vogelmeier CF. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J Allergy Clin Immunol Pract. 2021;9(6):2255–61. Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JW, Kostikas K, Price D, Reddel HK, Tsiligianni I, Vogelmeier CF. Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. J Allergy Clin Immunol Pract. 2021;9(6):2255–61.
32.
go back to reference Jammal AA, Thompson AC, Mariottoni EB, Berchuck SI, Urata CN, Estrela T, Wakil SM, Costa VP, Medeiros FA. Human versus machine: comparing a deep learning algorithm to human gradings for detecting glaucoma on fundus photographs. Am J Ophthalmol. 2020;211:123–31.CrossRefPubMed Jammal AA, Thompson AC, Mariottoni EB, Berchuck SI, Urata CN, Estrela T, Wakil SM, Costa VP, Medeiros FA. Human versus machine: comparing a deep learning algorithm to human gradings for detecting glaucoma on fundus photographs. Am J Ophthalmol. 2020;211:123–31.CrossRefPubMed
33.
go back to reference Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, Brink J. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol. 2018;15(3):504–8.CrossRefPubMed Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, Brink J. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol. 2018;15(3):504–8.CrossRefPubMed
34.
go back to reference Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, Kahn CE Jr, Esteva A, Karthikesalingam A, Mateen B, Webster D. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med. 2021;27(10):1663–5.CrossRefPubMed Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, Kahn CE Jr, Esteva A, Karthikesalingam A, Mateen B, Webster D. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med. 2021;27(10):1663–5.CrossRefPubMed
Metadata
Title
Accuracy of machine learning in the diagnosis of odontogenic cysts and tumors: a systematic review and meta-analysis
Authors
Priyanshu Kumar Shrivastava
Shamimul Hasan
Laraib Abid
Ranjit Injety
Ayush Kumar Shrivastav
Deborah Sybil
Publication date
26-03-2024
Publisher
Springer Nature Singapore
Published in
Oral Radiology
Print ISSN: 0911-6028
Electronic ISSN: 1613-9674
DOI
https://doi.org/10.1007/s11282-024-00745-7