Skip to main content
Top
Published in: BMC Oral Health 1/2021

Open Access 01-12-2021 | Oral and Maxillofacial Surgery | Research article

Biomechanical properties of the bone during implant placement

Authors: Ádám László Nagy, Zsolt Tóth, Tamás Tarjányi, Nándor Tamás Práger, Zoltán Lajos Baráth

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

In this research the biomechanical properties of a bone model was examined. Porcine ribs are used as experimental model. The objective of this research was to investigate and compare the biomechanical properties of the bone model before and after implant placement.

Methods

The bone samples were divided in three groups, Group 1 where ALL-ON-FOUR protocol was used during pre-drilling and placing the implants, Group 2 where ALL-ON-FOUR protocol was used during pre-drilling, and implants were not placed, and Group 3 consisting of intact bones served as a control group. Static and dynamic loading was applied for examining the model samples. Kruskal–Wallis statistical test and as a post-hoc test Mann–Whitney U test was performed to analyze experimental results.

Results

According to the results of the static loading, there was no significant difference between the implanted and original ribs, however, the toughness values of the bones decreased largely on account of predrilling the bones. The analysis of dynamic fatigue measurements by Kruskal–Wallis test showed significant differences between the intact and predrilled bones.

Conclusion

The pre-drilled bone was much weaker in both static and dynamic tests than the natural or implanted specimens. According to the results of the dynamic tests and after a certain loading cycle the implanted samples behaved the same way as the control samples, which suggests that implantation have stabilized the skeletal bone structure.
Literature
1.
go back to reference Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res. 2003;5(3):154–60.PubMedCrossRef Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res. 2003;5(3):154–60.PubMedCrossRef
2.
go back to reference Trisi P, Rao W. Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res. 1999;10(1):1–7.PubMedCrossRef Trisi P, Rao W. Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res. 1999;10(1):1–7.PubMedCrossRef
3.
go back to reference Kuchler U, von Arx T. horizontal ridge augmentation in conjunction with or prior to implant placement in the anterior maxilla: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):14–24.PubMedCrossRef Kuchler U, von Arx T. horizontal ridge augmentation in conjunction with or prior to implant placement in the anterior maxilla: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):14–24.PubMedCrossRef
4.
go back to reference Urban IA, Monje A. Guided bone regeneration in alveolar bone reconstruction. Oral Maxillofac Surg Clin North Am. 2019;31(2):331–8.PubMedCrossRef Urban IA, Monje A. Guided bone regeneration in alveolar bone reconstruction. Oral Maxillofac Surg Clin North Am. 2019;31(2):331–8.PubMedCrossRef
5.
go back to reference Malo P, Rangert B, Nobre M. “All-on-Four” immediate-function concept with Branemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res. 2003;5(Suppl 1):2–9.PubMedCrossRef Malo P, Rangert B, Nobre M. “All-on-Four” immediate-function concept with Branemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res. 2003;5(Suppl 1):2–9.PubMedCrossRef
6.
go back to reference Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci. 2018;6(6):1312–38.PubMedCrossRef Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci. 2018;6(6):1312–38.PubMedCrossRef
7.
go back to reference Bevilacqua M, Tealdo T, Pera F, Menini M, Mossolov A, Drago C, et al. Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths. Int J Prosthodont. 2008;21(6):539–42.PubMed Bevilacqua M, Tealdo T, Pera F, Menini M, Mossolov A, Drago C, et al. Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths. Int J Prosthodont. 2008;21(6):539–42.PubMed
8.
go back to reference Malo P, de Araujo NM, Rangert B. Short implants placed one-stage in maxillae and mandibles: a retrospective clinical study with 1 to 9 years of follow-up. Clin Implant Dent Relat Res. 2007;9(1):15–21.PubMedCrossRef Malo P, de Araujo NM, Rangert B. Short implants placed one-stage in maxillae and mandibles: a retrospective clinical study with 1 to 9 years of follow-up. Clin Implant Dent Relat Res. 2007;9(1):15–21.PubMedCrossRef
9.
go back to reference Daegling DJ, Hylander WL. Biomechanics of torsion in the human mandible. Am J Phys Anthropol. 1998;105(1):73–87.PubMedCrossRef Daegling DJ, Hylander WL. Biomechanics of torsion in the human mandible. Am J Phys Anthropol. 1998;105(1):73–87.PubMedCrossRef
10.
go back to reference Seong W-J, Kim U-K, Swift JQ, Heo Y-C, Hodges JS, Ko C-C. Elastic properties and apparent density of human edentulous maxilla and mandible. Int J Oral Maxillofac Surg. 2009;38(10):1088–93.PubMedPubMedCentralCrossRef Seong W-J, Kim U-K, Swift JQ, Heo Y-C, Hodges JS, Ko C-C. Elastic properties and apparent density of human edentulous maxilla and mandible. Int J Oral Maxillofac Surg. 2009;38(10):1088–93.PubMedPubMedCentralCrossRef
12.
go back to reference Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis. J Periodontal Implant Sci. 2017;47(4):251–62.PubMedPubMedCentralCrossRef Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis. J Periodontal Implant Sci. 2017;47(4):251–62.PubMedPubMedCentralCrossRef
14.
go back to reference Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs. Clin Oral Implants Res. 1995;6(3):164–71.PubMedCrossRef Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs. Clin Oral Implants Res. 1995;6(3):164–71.PubMedCrossRef
15.
go back to reference Kim S-J, Yoo J, Kim Y-S, Shin S-W. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci. 2010;18(5):522–7.PubMedPubMedCentralCrossRef Kim S-J, Yoo J, Kim Y-S, Shin S-W. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci. 2010;18(5):522–7.PubMedPubMedCentralCrossRef
18.
go back to reference Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J Prosthodont Res. 2017;61(2):123–32.PubMedCrossRef Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J Prosthodont Res. 2017;61(2):123–32.PubMedCrossRef
19.
go back to reference Jiang F, Rohatgi A, Vecchio KS, Cheney JL. Analysis of the dynamic responses for a pre-cracked three-point bend specimen. Int J Fract. 2004;127(1):147–65.CrossRef Jiang F, Rohatgi A, Vecchio KS, Cheney JL. Analysis of the dynamic responses for a pre-cracked three-point bend specimen. Int J Fract. 2004;127(1):147–65.CrossRef
20.
go back to reference Leppanen O, Sievanen H, Jokihaara J, Pajamaki I, Jarvinen TLN. Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res. 2006;21(8):1231–7.PubMedCrossRef Leppanen O, Sievanen H, Jokihaara J, Pajamaki I, Jarvinen TLN. Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol. J Bone Miner Res. 2006;21(8):1231–7.PubMedCrossRef
22.
go back to reference Sadeghi H, Espino DM, Shepherd DET. Fatigue strength of bovine articular cartilage-on-bone under three-point bending: the effect of loading frequency. BMC Musculoskelet Disord. 2017;18(1):142.PubMedPubMedCentralCrossRef Sadeghi H, Espino DM, Shepherd DET. Fatigue strength of bovine articular cartilage-on-bone under three-point bending: the effect of loading frequency. BMC Musculoskelet Disord. 2017;18(1):142.PubMedPubMedCentralCrossRef
23.
go back to reference Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14(2):103–9.PubMedCrossRef Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14(2):103–9.PubMedCrossRef
24.
go back to reference Zioupos P, Hansen U, Currey JD. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech. 2008;41(14):2932–9.PubMedCrossRef Zioupos P, Hansen U, Currey JD. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech. 2008;41(14):2932–9.PubMedCrossRef
26.
go back to reference Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17(3):346–53.PubMedCrossRef Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17(3):346–53.PubMedCrossRef
27.
go back to reference Sannino G. All-on-4 concept: a 3-dimensional finite element analysis. J Oral Implantol. 2015;41(2):163–71.PubMedCrossRef Sannino G. All-on-4 concept: a 3-dimensional finite element analysis. J Oral Implantol. 2015;41(2):163–71.PubMedCrossRef
28.
go back to reference Jamsa T, Jalovaara P, Peng Z, Vaananen HK, Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone. 1998;23(2):155–61.PubMedCrossRef Jamsa T, Jalovaara P, Peng Z, Vaananen HK, Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone. 1998;23(2):155–61.PubMedCrossRef
Metadata
Title
Biomechanical properties of the bone during implant placement
Authors
Ádám László Nagy
Zsolt Tóth
Tamás Tarjányi
Nándor Tamás Práger
Zoltán Lajos Baráth
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01442-1

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue