Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2024

Open Access 01-12-2024 | Research

Optimizing deep learning-based segmentation of densely packed cells using cell surface markers

Authors: Sunwoo Han, Khamsone Phasouk, Jia Zhu, Youyi Fong

Published in: BMC Medical Informatics and Decision Making | Issue 1/2024

Login to get access

Abstract

Background

Spatial molecular profiling depends on accurate cell segmentation. Identification and quantitation of individual cells in dense tissues, e.g. highly inflamed tissue caused by viral infection or immune reaction, remains a challenge.

Methods

We first assess the performance of 18 deep learning-based cell segmentation models, either pre-trained or trained by us using two public image sets, on a set of immunofluorescence images stained with immune cell surface markers in skin tissue obtained during human herpes simplex virus (HSV) infection. We then further train eight of these models using up to 10,000+ training instances from the current image set. Finally, we seek to improve performance by tuning parameters of the most successful method from the previous step.

Results

The best model before fine-tuning achieves a mean Average Precision (mAP) of 0.516. Prediction performance improves substantially after training. The best model is the cyto model from Cellpose. After training, it achieves an mAP of 0.694; with further parameter tuning, the mAP reaches 0.711.

Conclusion

Selecting the best model among the existing approaches and further training the model with images of interest produce the most gain in prediction performance. The performance of the resulting model compares favorably to human performance. The imperfection of the final model performance can be attributed to the moderate signal-to-noise ratio in the imageset.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li G, Liu T, Nie J, Guo L, Chen J, Zhu J, et al. Segmentation of touching cell nuclei using gradient flow tracking. Clust Comput. 2008;231(1):47–58.CrossRef Li G, Liu T, Nie J, Guo L, Chen J, Zhu J, et al. Segmentation of touching cell nuclei using gradient flow tracking. Clust Comput. 2008;231(1):47–58.CrossRef
2.
go back to reference Xie Y, Kong X, Xing F, Liu F, Su H, Yang L. Deep voting: a robust approach toward nucleus localization in microscopy images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015. p. 374–382. Xie Y, Kong X, Xing F, Liu F, Su H, Yang L. Deep voting: a robust approach toward nucleus localization in microscopy images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015. p. 374–382.
3.
go back to reference Song Y, Tan EL, Jiang X, Cheng JZ, Ni D, Chen S, et al. Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans Med Imaging. 2016;36(1):288–300.CrossRefPubMed Song Y, Tan EL, Jiang X, Cheng JZ, Ni D, Chen S, et al. Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans Med Imaging. 2016;36(1):288–300.CrossRefPubMed
4.
go back to reference Schmidt U, Weigert M, Broaddus C, Myers G. Cell detection with star-convex polygons. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 265–273. Schmidt U, Weigert M, Broaddus C, Myers G. Cell detection with star-convex polygons. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 265–273.
5.
go back to reference Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M. A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinformatics. 2018;19(1):1–11.CrossRef Al-Kofahi Y, Zaltsman A, Graves R, Marshall W, Rusu M. A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinformatics. 2018;19(1):1–11.CrossRef
6.
go back to reference Hollandi R, Szkalisity A, Toth T, Tasnadi E, Molnar C, Mathe B, et al. nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 2020;10(5):453–8.CrossRefPubMedPubMedCentral Hollandi R, Szkalisity A, Toth T, Tasnadi E, Molnar C, Mathe B, et al. nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 2020;10(5):453–8.CrossRefPubMedPubMedCentral
7.
go back to reference Durkee MS, Abraham R, Ai J, Fuhrman JD, Clark MR, Giger ML. Comparing Mask R-CNN and U-Net architectures for robust automatic segmentation of immune cells in immunofluorescence images of Lupus Nephritis biopsies. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX. vol. 11647. International Society for Optics and Photonics; 2021. p. 116470X. Durkee MS, Abraham R, Ai J, Fuhrman JD, Clark MR, Giger ML. Comparing Mask R-CNN and U-Net architectures for robust automatic segmentation of immune cells in immunofluorescence images of Lupus Nephritis biopsies. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX. vol. 11647. International Society for Optics and Photonics; 2021. p. 116470X.
8.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.CrossRefPubMed Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.CrossRefPubMed
9.
go back to reference Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.CrossRefPubMed Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.CrossRefPubMed
10.
go back to reference Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19:1634–41. Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. Nat Methods. 2022;19:1634–41.
11.
go back to reference Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat Biotechnol. 2022;40:555–65.CrossRefPubMed Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat Biotechnol. 2022;40:555–65.CrossRefPubMed
12.
go back to reference Lee MY, Bedia JS, Bhate SS, Barlow GL, Phillips D, Fantl WJ, et al. Cell Seg: a robust, pre-trained nucleus segmentation and pixel quantification software for highly multiplexed fluorescence images. BMC Bioinformatics. 2022;23(1):1–17.CrossRef Lee MY, Bedia JS, Bhate SS, Barlow GL, Phillips D, Fantl WJ, et al. Cell Seg: a robust, pre-trained nucleus segmentation and pixel quantification software for highly multiplexed fluorescence images. BMC Bioinformatics. 2022;23(1):1–17.CrossRef
13.
go back to reference Koyuncu CF, Gunesli GN, Cetin-Atalay R, Gunduz-Demir C. DeepDistance: a multi-task deep regression model for cell detection in inverted microscopy images. Med Image Anal. 2020;63:101720.CrossRefPubMed Koyuncu CF, Gunesli GN, Cetin-Atalay R, Gunduz-Demir C. DeepDistance: a multi-task deep regression model for cell detection in inverted microscopy images. Med Image Anal. 2020;63:101720.CrossRefPubMed
14.
go back to reference Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR. 2013. arXiv:1311.2524. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR. 2013. arXiv:​1311.​2524.
15.
go back to reference He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intel. 2015;37(9):1904–16.CrossRef He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intel. 2015;37(9):1904–16.CrossRef
16.
go back to reference Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. Los Alamitos: Conference Publishing Services; 2015. p. 1440–1448. Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. Los Alamitos: Conference Publishing Services; 2015. p. 1440–1448.
17.
go back to reference Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. arXiv:1506.01497. 2015;28:1–9. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. arXiv:1506.01497. 2015;28:1–9.
18.
go back to reference He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision. Cambridge: IEEE; 2017. p. 2961–2969. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision. Cambridge: IEEE; 2017. p. 2961–2969.
19.
20.
go back to reference Edlund C, Jackson TR, Khalid N, Bevan N, Dale T, Dengel A, et al. LIVECell—a large-scale dataset for label-free live cell segmentation. Nat Methods. 2021;18(9):1038–45.CrossRefPubMedPubMedCentral Edlund C, Jackson TR, Khalid N, Bevan N, Dale T, Dengel A, et al. LIVECell—a large-scale dataset for label-free live cell segmentation. Nat Methods. 2021;18(9):1038–45.CrossRefPubMedPubMedCentral
21.
go back to reference Wang EK, Zhang X, Pan L, Cheng C, Dimitrakopoulou-Strauss A, Li Y, et al. Multi-path dilated residual network for nuclei segmentation and detection. Cells. 2019;8(5):499.CrossRefPubMedPubMedCentral Wang EK, Zhang X, Pan L, Cheng C, Dimitrakopoulou-Strauss A, Li Y, et al. Multi-path dilated residual network for nuclei segmentation and detection. Cells. 2019;8(5):499.CrossRefPubMedPubMedCentral
22.
go back to reference Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat Methods. 2019;16(12):1247–53.CrossRefPubMedPubMedCentral Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat Methods. 2019;16(12):1247–53.CrossRefPubMedPubMedCentral
23.
go back to reference Peng T, Phasouk K, Sodroski CN, Sun S, Hwangbo Y, Layton ED, et al. Tissue-Resident-Memory CD8+ T Cells Bridge Innate Immune Responses in Neighboring Epithelial Cells to Control Human Genital Herpes. Front Immunol. 2021;6(12):735643. Peng T, Phasouk K, Sodroski CN, Sun S, Hwangbo Y, Layton ED, et al. Tissue-Resident-Memory CD8+ T Cells Bridge Innate Immune Responses in Neighboring Epithelial Cells to Control Human Genital Herpes. Front Immunol. 2021;6(12):735643.
25.
go back to reference Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer; 2014. p. 818–833. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer; 2014. p. 818–833.
26.
go back to reference Casado-García Á, Domínguez C, García-Domínguez M, Heras J, Inés A, Mata E, et al. CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks. BMC Bioinformatics. 2019;20:1–14.CrossRef Casado-García Á, Domínguez C, García-Domínguez M, Heras J, Inés A, Mata E, et al. CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks. BMC Bioinformatics. 2019;20:1–14.CrossRef
27.
go back to reference Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV. Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. p. 113–123. Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV. Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. p. 113–123.
28.
go back to reference Dayao MT, Brusko M, Wasserfall C, Bar-Joseph Z. Membrane marker selection for segmenting single cell spatial proteomics data. Nat Commun. 2022;13(1):1999.CrossRefPubMedPubMedCentral Dayao MT, Brusko M, Wasserfall C, Bar-Joseph Z. Membrane marker selection for segmenting single cell spatial proteomics data. Nat Commun. 2022;13(1):1999.CrossRefPubMedPubMedCentral
29.
go back to reference Iuga AI, Carolus H, Höink AJ, Brosch T, Klinder T, Maintz D, et al. Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks. BMC Med Imaging. 2021;21(1):1–12.CrossRef Iuga AI, Carolus H, Höink AJ, Brosch T, Klinder T, Maintz D, et al. Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks. BMC Med Imaging. 2021;21(1):1–12.CrossRef
30.
go back to reference Nayan AA, Kijsirikul B, Iwahori Y. Mediastinal lymph node detection and segmentation using deep learning. IEEE Access. 2022;10:89289–307.CrossRef Nayan AA, Kijsirikul B, Iwahori Y. Mediastinal lymph node detection and segmentation using deep learning. IEEE Access. 2022;10:89289–307.CrossRef
31.
go back to reference Rinneburger M, Carolus H, Iuga AI, Weisthoff M, Lennartz S, Hokamp NG, et al. Automated localization and segmentation of cervical lymph nodes on contrast-enhanced CT using a 3D foveal fully convolutional neural network. Eur Radiol Exp. 2023;7(1):1–15.CrossRef Rinneburger M, Carolus H, Iuga AI, Weisthoff M, Lennartz S, Hokamp NG, et al. Automated localization and segmentation of cervical lymph nodes on contrast-enhanced CT using a 3D foveal fully convolutional neural network. Eur Radiol Exp. 2023;7(1):1–15.CrossRef
Metadata
Title
Optimizing deep learning-based segmentation of densely packed cells using cell surface markers
Authors
Sunwoo Han
Khamsone Phasouk
Jia Zhu
Youyi Fong
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2024
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-024-02502-6

Other articles of this Issue 1/2024

BMC Medical Informatics and Decision Making 1/2024 Go to the issue