Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 12/2009

01-12-2009 | Original Article

Optimization of time-of-flight reconstruction on Philips GEMINI TF

Authors: Stefaan Vandenberghe, Larry van Elmbt, Michel Guerchaft, Enrico Clementel, Jeroen Verhaeghe, Anne Bol, Ignace Lemahieu, Max Lonneux

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 12/2009

Login to get access

Abstract

Purpose

The aim of this study is to optimize different parameters in the time-of-flight (TOF) reconstruction for the Philips GEMINI TF. The use of TOF in iterative reconstruction introduces additional variables to be optimized compared to conventional PET reconstruction. The different parameters studied are the TOF kernel width, the kernel truncation (used to reduce reconstruction time) and the scatter correction method.

Methods

These parameters are optimized using measured phantom studies. All phantom studies were acquired with a very high number of counts to limit the effects of noise. A high number of iterations (33 subsets and 3 iterations) was used to reach convergence. The figures of merit are the uniformity in the background, the cold spot recovery and the hot spot contrast. As reference results we used the non-TOF reconstruction of the same data sets.

Results

It is shown that contrast recovery loss can only be avoided if the kernel is extended to more than 3 standard deviations. To obtain uniform reconstructions the recommended scatter correction is TOF single scatter simulation (SSS). This also leads to improved cold spot recovery and hot spot contrast. While the daily measurements of the system show a timing resolution in the range of 590–600 ps, the optimal reconstructions are obtained with a TOF kernel full-width at half-maximum (FWHM) of 650–700 ps. The optimal kernel width seems to be less critical for the recovered contrast but has an important effect on the background uniformity. Using smaller or wider kernels results in a less uniform background and reduced hot and cold contrast recovery.

Conclusion

The different parameters studied have a large effect on the quantitative accuracy of the reconstructed images. The optimal settings from this study can be used as a guideline to make an objective comparison of the gains obtained with TOF PET versus PET reconstruction.
Literature
1.
go back to reference Campagnolo RE, Garderet P, Vacher J. Tomographie par emeterurs positrons avec mesure de temp de vol. In: Colloque National sur le Traitement du Signal, Nice, France. (1979). Campagnolo RE, Garderet P, Vacher J. Tomographie par emeterurs positrons avec mesure de temp de vol. In: Colloque National sur le Traitement du Signal, Nice, France. (1979).
2.
go back to reference Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M. The leti positron tomograph architecture and time of flight improvements. In: Proceedings of The Workshop on Time of Flight Tomography, St Louis, USA. (1982). Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M. The leti positron tomograph architecture and time of flight improvements. In: Proceedings of The Workshop on Time of Flight Tomography, St Louis, USA. (1982).
3.
go back to reference Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging 1982;1:187–92.CrossRefPubMed Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (Super PETT I). IEEE Trans Med Imaging 1982;1:187–92.CrossRefPubMed
4.
go back to reference Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.PubMed Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med 1983;24:73–8.PubMed
5.
go back to reference Wong WH. PET camera performance design evaluation for BGO and BaF2 scintillators (non-time-of-flight). J Nucl Med 1988;29:338–47.PubMed Wong WH. PET camera performance design evaluation for BGO and BaF2 scintillators (non-time-of-flight). J Nucl Med 1988;29:338–47.PubMed
6.
go back to reference Mallon A, Grangeat P. Three-dimensional PET reconstruction with time-of-flight measurement. Phys Med Biol 1992;37:717–29.CrossRefPubMed Mallon A, Grangeat P. Three-dimensional PET reconstruction with time-of-flight measurement. Phys Med Biol 1992;37:717–29.CrossRefPubMed
7.
go back to reference Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL. Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr 1981;5:227–39.CrossRefPubMed Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL. Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr 1981;5:227–39.CrossRefPubMed
10.
go back to reference van Eijk CW. Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography. Radiat Prot Dosimetry 2008;129:13–21.CrossRefPubMed van Eijk CW. Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography. Radiat Prot Dosimetry 2008;129:13–21.CrossRefPubMed
11.
go back to reference Aykac M, Bauer F, Williams C, Loope M, Schmand M. Timing performance of Hi-Rez detector for time-of-flight (TOF) PET. IEEE Trans Nucl Sci 2006;53:1084–9.CrossRef Aykac M, Bauer F, Williams C, Loope M, Schmand M. Timing performance of Hi-Rez detector for time-of-flight (TOF) PET. IEEE Trans Nucl Sci 2006;53:1084–9.CrossRef
12.
go back to reference Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49:4593–610.CrossRefPubMed Surti S, Karp JS, Muehllehner G. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation. Phys Med Biol 2004;49:4593–610.CrossRefPubMed
13.
go back to reference Popescu LM, Lewitt RM. Small nodule detectability evaluation using a generalized scan-statistic model. Phys Med Biol 2006;51:6225–44.CrossRefPubMed Popescu LM, Lewitt RM. Small nodule detectability evaluation using a generalized scan-statistic model. Phys Med Biol 2006;51:6225–44.CrossRefPubMed
14.
go back to reference Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of time-of-flight benefit for fully 3-D PET. IEEE Trans Med Imaging 2006;25:529–38.CrossRefPubMed Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of time-of-flight benefit for fully 3-D PET. IEEE Trans Med Imaging 2006;25:529–38.CrossRefPubMed
15.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.PubMed
16.
go back to reference Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008;49:462–70.CrossRefPubMed Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008;49:462–70.CrossRefPubMed
17.
go back to reference Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005;50:4507–26.CrossRefPubMed Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005;50:4507–26.CrossRefPubMed
18.
go back to reference Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med 1980;21:1095–7.PubMed Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med 1980;21:1095–7.PubMed
19.
go back to reference Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749–63.CrossRefPubMed Defrise M, Casey ME, Michel C, Conti M. Fourier rebinning of time-of-flight PET data. Phys Med Biol 2005;50:2749–63.CrossRefPubMed
20.
go back to reference Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol 2006;51:1603–21.CrossRefPubMed Vandenberghe S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing. Phys Med Biol 2006;51:1603–21.CrossRefPubMed
21.
go back to reference Parra L, Barrett HH. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Trans Med Imaging 1998;17:228–35.CrossRefPubMed Parra L, Barrett HH. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Trans Med Imaging 1998;17:228–35.CrossRefPubMed
22.
go back to reference Wang W, Hu Z, Gualtieri E, Parma M, Walsh E, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1715–22. Wang W, Hu Z, Gualtieri E, Parma M, Walsh E, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1715–22.
23.
go back to reference Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol 2004;49:2577–98.CrossRefPubMed Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol 2004;49:2577–98.CrossRefPubMed
24.
go back to reference Werner M, Surti S, Karp J. Implementation and evaluation of a 3D PET single scatter simulation with TOF modeling. IEEE Nucl Sci Symp Conf Rec 2006;3:1768–73. Werner M, Surti S, Karp J. Implementation and evaluation of a 3D PET single scatter simulation with TOF modeling. IEEE Nucl Sci Symp Conf Rec 2006;3:1768–73.
25.
go back to reference Watson C. Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Nucl Sci Symp Conf Rec 2005;5:2492–6.CrossRef Watson C. Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE Nucl Sci Symp Conf Rec 2005;5:2492–6.CrossRef
26.
go back to reference Daube-Witherspoon M, Surti S, Matej S, Werner M, Jayanthi S, Karp J. Influence of time-of-flight kernel accuracy in TOF-PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1723–7. Daube-Witherspoon M, Surti S, Matej S, Werner M, Jayanthi S, Karp J. Influence of time-of-flight kernel accuracy in TOF-PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1723–7.
27.
go back to reference Vandenberghe S, Verhaeghe J, Lemahieu I, Matej S, Daube-Witherspoon M, Karp J, et al. Determining timing resolution from TOF-PET emission data. IEEE Nucl Sci Symp Conf Rec 2007;4:2727–31. Vandenberghe S, Verhaeghe J, Lemahieu I, Matej S, Daube-Witherspoon M, Karp J, et al. Determining timing resolution from TOF-PET emission data. IEEE Nucl Sci Symp Conf Rec 2007;4:2727–31.
Metadata
Title
Optimization of time-of-flight reconstruction on Philips GEMINI TF
Authors
Stefaan Vandenberghe
Larry van Elmbt
Michel Guerchaft
Enrico Clementel
Jeroen Verhaeghe
Anne Bol
Ignace Lemahieu
Max Lonneux
Publication date
01-12-2009
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 12/2009
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-009-1164-3

Other articles of this Issue 12/2009

European Journal of Nuclear Medicine and Molecular Imaging 12/2009 Go to the issue