Skip to main content
Top
Published in: Intensive Care Medicine 12/2011

01-12-2011 | Pediatric Original

Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis

Authors: Sandrine Essouri, Philippe Durand, Laurent Chevret, Laurent Balu, Denis Devictor, Brigitte Fauroux, Pierre Tissières

Published in: Intensive Care Medicine | Issue 12/2011

Login to get access

Abstract

Purpose

To determine the optimal level of nasal continuous positive airway pressure (nCPAP) in infants with severe hypercapnic viral bronchiolitis as assessed by the maximal unloading of the respiratory muscles and improvement of breathing pattern and gas exchange.

Methods

A prospective physiological study in a tertiary paediatric intensive care unit (PICU). Breathing pattern, gas exchange, intrinsic end expiratory pressure (PEEPi) and respiratory muscle effort were measured in ten infants with severe hypercapnic viral bronchiolitis during spontaneous breathing (SB) and three increasing levels of nCPAP.

Results

During SB, median PEEPi was 6 cmH2O (range 3.9–9.2 cmH2O), median respiratory rate was 78 breaths/min (range 41–96), median inspiratory time/total duty cycle (T i/T tot) was 0.45 (range 0.40–0.48) and transcutaneous carbon dioxide pressure (P tcCO2) was 61.5 mmHg (range 50–78). In all the infants, an nCPAP level of 7 cmH2O was associated with the greatest reduction in respiratory effort with a mean reduction in oesophageal and diaphragmatic pressure swings of 48 and 46%, respectively, and of the oesophageal and diaphragmatic pressure time product of 49 and 56%, respectively. During nCPAP, median respiratory rate decreased to 56 breaths/min (range 39–108, p < 0.05), median T i/T tot decreased to 0.40 (range 0.34–0.44, p < 0.50) and P tcCO2 decreased to 49 mmHg (range 35–65, p < 0.05). Only one infant with associated bacterial pneumonia required intubation and all the infants were discharged alive from the PICU after a median stay of 5.5 (range 3–27 days).

Conclusion

In infants with hypercapnic respiratory failure due to acute viral bronchiolitis, an nCPAP level of 7 cmH2O is associated with the greatest unloading of the respiratory muscles and improvement of breathing pattern, as well as a favourable short-term clinical outcome.
Literature
1.
go back to reference Deshpande SA, Northern V (2003) The clinical and health economic burden of respiratory syncytial virus disease among children under 2 years of age in a defined geographical area. Arch Dis Child 88:1065–1069PubMedCrossRef Deshpande SA, Northern V (2003) The clinical and health economic burden of respiratory syncytial virus disease among children under 2 years of age in a defined geographical area. Arch Dis Child 88:1065–1069PubMedCrossRef
2.
go back to reference Brooks AM, McBride JT, McConnochie KM, Aviram M, Long C, Hall CB (1999) Predicting deterioration in previously healthy infants hospitalized with respiratory syncytial virus infection. Pediatrics 104:463–467PubMedCrossRef Brooks AM, McBride JT, McConnochie KM, Aviram M, Long C, Hall CB (1999) Predicting deterioration in previously healthy infants hospitalized with respiratory syncytial virus infection. Pediatrics 104:463–467PubMedCrossRef
3.
go back to reference Le Souëf PN, England SJ, Stogryn HA, Bryan AC (1988) Comparison of diaphragmatic fatigue in newborn and older rabbits. J Appl Physiol 65:1040–1044PubMed Le Souëf PN, England SJ, Stogryn HA, Bryan AC (1988) Comparison of diaphragmatic fatigue in newborn and older rabbits. J Appl Physiol 65:1040–1044PubMed
4.
go back to reference Larrar S, Essouri S, Durand P, Chevret L, Haas V, Chabernaud JL, Leyronnas D, Devictor D (2006) Effects of nasal continuous positive airway pressure ventilation in infants with severe acute bronchiolitis. Arch Pediatr 13:1397–1403PubMedCrossRef Larrar S, Essouri S, Durand P, Chevret L, Haas V, Chabernaud JL, Leyronnas D, Devictor D (2006) Effects of nasal continuous positive airway pressure ventilation in infants with severe acute bronchiolitis. Arch Pediatr 13:1397–1403PubMedCrossRef
5.
go back to reference Campion A, Huvenne H, Leteurtre S, Noizet O, Binoche A, Diependaele JF, Cremer R, Fourier C, Sadik A, Leclerc F (2006) Non-invasive ventilation in infants with severe infection presumably due to respiratory syncytial virus: feasibility and failure criteria. Arch Pediatr 13:1404–1409PubMedCrossRef Campion A, Huvenne H, Leteurtre S, Noizet O, Binoche A, Diependaele JF, Cremer R, Fourier C, Sadik A, Leclerc F (2006) Non-invasive ventilation in infants with severe infection presumably due to respiratory syncytial virus: feasibility and failure criteria. Arch Pediatr 13:1404–1409PubMedCrossRef
6.
go back to reference Javouhey E, Barats A, Richard N, Stamm D, Floret D (2008) Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med 34:1608–1614PubMedCrossRef Javouhey E, Barats A, Richard N, Stamm D, Floret D (2008) Non-invasive ventilation as primary ventilatory support for infants with severe bronchiolitis. Intensive Care Med 34:1608–1614PubMedCrossRef
7.
go back to reference Thia LP, McKenzie SA, Blyth TP, Minasian CC, Kozlowska WJ, Carr SB (2008) Randomised controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child 93:45–47PubMedCrossRef Thia LP, McKenzie SA, Blyth TP, Minasian CC, Kozlowska WJ, Carr SB (2008) Randomised controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child 93:45–47PubMedCrossRef
8.
go back to reference Cambonie G, Milési C, Jaber S, Amsallem F, Barbotte E, Picaud JC, Matecki S (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34:1865–1872PubMedCrossRef Cambonie G, Milési C, Jaber S, Amsallem F, Barbotte E, Picaud JC, Matecki S (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34:1865–1872PubMedCrossRef
9.
go back to reference (2001) Consensus conference on the management of infant bronchiolitis. Paris, France, 21 September 2000. Proceedings. Arch Pediatr 8(Suppl 1):1s–196s (2001) Consensus conference on the management of infant bronchiolitis. Paris, France, 21 September 2000. Proceedings. Arch Pediatr 8(Suppl 1):1s–196s
10.
go back to reference Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6:2–8PubMedCrossRef Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6:2–8PubMedCrossRef
11.
go back to reference Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791PubMed Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791PubMed
12.
go back to reference Fauroux B, Nicot F, Essouri S, Hart N, Clément A, Polkey MI, Lofaso F (2004) Setting of non-invasive pressure support in young patients with cystic fibrosis. Eur Respir J 24:624–630PubMedCrossRef Fauroux B, Nicot F, Essouri S, Hart N, Clément A, Polkey MI, Lofaso F (2004) Setting of non-invasive pressure support in young patients with cystic fibrosis. Eur Respir J 24:624–630PubMedCrossRef
13.
go back to reference Essouri S, Durand P, Chevret L, Haas V, Perot C, Clement A, Devictor D, Fauroux B (2008) Physiological effects of non-invasive positive ventilation during acute moderate hypercapnic respiratory insufficiency in children. Intensive Care Med 34:2248–2255PubMedCrossRef Essouri S, Durand P, Chevret L, Haas V, Perot C, Clement A, Devictor D, Fauroux B (2008) Physiological effects of non-invasive positive ventilation during acute moderate hypercapnic respiratory insufficiency in children. Intensive Care Med 34:2248–2255PubMedCrossRef
14.
go back to reference Barnard PA, Levine S (1986) Critique on application of diaphragmatic time-tension index to spontaneously breathing humans. J Appl Physiol 60:1067–1072PubMed Barnard PA, Levine S (1986) Critique on application of diaphragmatic time-tension index to spontaneously breathing humans. J Appl Physiol 60:1067–1072PubMed
15.
go back to reference Field S, Sanci S, Grassino A (1984) Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol 57:44–51PubMed Field S, Sanci S, Grassino A (1984) Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol 57:44–51PubMed
16.
go back to reference Sassoon CS, Light RW, Lodia R, Sieck GC, Mahutte CK (1991) Pressure–time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis 143:469–475PubMed Sassoon CS, Light RW, Lodia R, Sieck GC, Mahutte CK (1991) Pressure–time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis 143:469–475PubMed
17.
go back to reference Pepe PE, Marini JJ (1982) Occult positive end–expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis 126:166–170PubMed Pepe PE, Marini JJ (1982) Occult positive end–expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis 126:166–170PubMed
18.
go back to reference O’Donoghue FJ, Catcheside PG, Jordan AS, Bersten AD, McEvoy RD (2002) Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax 57:533–539PubMedCrossRef O’Donoghue FJ, Catcheside PG, Jordan AS, Bersten AD, McEvoy RD (2002) Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax 57:533–539PubMedCrossRef
20.
go back to reference Gauthier R, Beyaert C, Feillet F, Peslin R, Monin P, Marchal F (1998) Respiratory oscillation mechanics in infants with bronchiolitis during mechanical ventilation. Pediatr Pulmonol 25:18–31PubMedCrossRef Gauthier R, Beyaert C, Feillet F, Peslin R, Monin P, Marchal F (1998) Respiratory oscillation mechanics in infants with bronchiolitis during mechanical ventilation. Pediatr Pulmonol 25:18–31PubMedCrossRef
21.
go back to reference Rochester DF, Bettini G (1976) Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia. J Clin Invest 57:661–672PubMedCrossRef Rochester DF, Bettini G (1976) Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia. J Clin Invest 57:661–672PubMedCrossRef
22.
go back to reference Soust M, Walker AM, Berger PJ (1989) Diaphragm VO2, diaphragm EMG, pressure-time product and calculated ventilation in newborn lambs during hypercapnic hyperpnoea. Respir Physiol 76:107–117PubMedCrossRef Soust M, Walker AM, Berger PJ (1989) Diaphragm VO2, diaphragm EMG, pressure-time product and calculated ventilation in newborn lambs during hypercapnic hyperpnoea. Respir Physiol 76:107–117PubMedCrossRef
23.
go back to reference Fauroux B, Hart N, Luo YM, MacNeill S, Moxham J, Lofaso F, Polkey MI (2003) Measurement of diaphragm loading during pressure support ventilation. Intensive Care Med 29:1960–1966PubMedCrossRef Fauroux B, Hart N, Luo YM, MacNeill S, Moxham J, Lofaso F, Polkey MI (2003) Measurement of diaphragm loading during pressure support ventilation. Intensive Care Med 29:1960–1966PubMedCrossRef
24.
go back to reference Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436PubMedCrossRef Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436PubMedCrossRef
25.
go back to reference Stokes GM, Milner AD, Groggins RC (1981) Work of breathing, intra-thoracic pressure and clinical findings in a group of babies with bronchiolitis. Acta Paediatr Scand 70:689–694PubMedCrossRef Stokes GM, Milner AD, Groggins RC (1981) Work of breathing, intra-thoracic pressure and clinical findings in a group of babies with bronchiolitis. Acta Paediatr Scand 70:689–694PubMedCrossRef
Metadata
Title
Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis
Authors
Sandrine Essouri
Philippe Durand
Laurent Chevret
Laurent Balu
Denis Devictor
Brigitte Fauroux
Pierre Tissières
Publication date
01-12-2011
Publisher
Springer-Verlag
Published in
Intensive Care Medicine / Issue 12/2011
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-011-2372-4

Other articles of this Issue 12/2011

Intensive Care Medicine 12/2011 Go to the issue