Skip to main content
Top
Published in: Brain Structure and Function 2/2014

01-03-2014 | Original Article

Optical imaging of visually guided reaching in macaque posterior parietal cortex

Authors: Barbara Heider, Ralph M. Siegel

Published in: Brain Structure and Function | Issue 2/2014

Login to get access

Abstract

Sensorimotor transformation for reaching movements in primates requires a large network of visual, parietal, and frontal cortical areas. We performed intrinsic optical imaging over posterior parietal cortex including areas 7a and the dorsal perilunate in macaque monkeys during visually guided hand movements. Reaching was performed while foveating one of nine static reach targets; thus eye-position-varied concurrently with reach position. The hemodynamic reflectance signal was analyzed during specific phases of the task including pre-reach, reach, and touch epochs. The eye position maps changed substantially as the task progressed: First, direction of spatial tuning shifted from a weak preference close to the center to the lower eye positions in both cortical areas. Overall tuning strength was greater in area 7a. Second, strength of spatial tuning increased from the early pre-reach to the later touch epoch. These consistent temporal changes suggest that dynamic properties of the reflectance signal were modulated by task parameters. The peak amplitude and peak delay of the reflectance signal showed considerable differences between eye position but were similar between areas. Compared with a detection task using a lever response, the reach task yielded higher amplitudes and longer delays. These findings demonstrate a spatially tuned topographical representation for reaching in both areas and suggest a strong synergistic combination of various feedback signals that result in a spatially tuned amplification of the hemodynamic response in posterior parietal cortex.
Literature
go back to reference Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220PubMedCrossRef Andersen RA, Buneo CA (2002) Intentional maps in posterior parietal cortex. Ann Rev Neurosci 25:189–220PubMedCrossRef
go back to reference Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230(4724):456–458PubMedCrossRef Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230(4724):456–458PubMedCrossRef
go back to reference Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296(1):65–113PubMedCrossRef Andersen RA, Asanuma C, Essick G, Siegel RM (1990a) Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296(1):65–113PubMedCrossRef
go back to reference Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10(4):1176–1196PubMed Andersen RA, Bracewell RM, Barash S, Gnadt JW, Fogassi L (1990b) Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10(4):1176–1196PubMed
go back to reference Arcaro MJ, Pinsk MA, Li X, Kastner S (2011) Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J Neurosci 31(6):2064–2078PubMedCentralPubMedCrossRef Arcaro MJ, Pinsk MA, Li X, Kastner S (2011) Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J Neurosci 31(6):2064–2078PubMedCentralPubMedCrossRef
go back to reference Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex 19(12):2848–2864PubMedCrossRef Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex 19(12):2848–2864PubMedCrossRef
go back to reference Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283):1868–1871PubMedCrossRef Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283):1868–1871PubMedCrossRef
go back to reference Arieli A, Grinvald A, Slovin H (2002) Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications. J Neurosci Meth 114(2):119–133CrossRef Arieli A, Grinvald A, Slovin H (2002) Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications. J Neurosci Meth 114(2):119–133CrossRef
go back to reference Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M, Van Essen DC (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699PubMed Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M, Van Essen DC (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699PubMed
go back to reference Batista AP, Andersen RA (2001) The parietal reach region codes the next planned movement in a sequential reach task. J Neurophysiol 85(2):539–544PubMed Batista AP, Andersen RA (2001) The parietal reach region codes the next planned movement in a sequential reach task. J Neurophysiol 85(2):539–544PubMed
go back to reference Batschelet E (1981) Circular statistics in biology. Academic Press, London Batschelet E (1981) Circular statistics in biology. Academic Press, London
go back to reference Battaglia-Mayer A, Ferraina S, Genovesio A, Marconi B, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. Cereb Cortex 11(6):528–544PubMedCrossRef Battaglia-Mayer A, Ferraina S, Genovesio A, Marconi B, Squatrito S, Molinari M, Lacquaniti F, Caminiti R (2001) Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections. Cereb Cortex 11(6):528–544PubMedCrossRef
go back to reference Battaglia-Mayer A, Mascaro M, Brunamonti E, Caminiti R (2005) The over-representation of contralateral space in parietal cortex: a positive image of directional motor components of neglect? Cereb Cortex 15(5):514–525PubMedCrossRef Battaglia-Mayer A, Mascaro M, Brunamonti E, Caminiti R (2005) The over-representation of contralateral space in parietal cortex: a positive image of directional motor components of neglect? Cereb Cortex 15(5):514–525PubMedCrossRef
go back to reference Battaglia-Mayer A, Mascaro M, Caminiti R (2007) Temporal evolution and strength of neural activity in parietal cortex during eye and hand movements. Cereb Cortex 17(6):1350–1363PubMedCrossRef Battaglia-Mayer A, Mascaro M, Caminiti R (2007) Temporal evolution and strength of neural activity in parietal cortex during eye and hand movements. Cereb Cortex 17(6):1350–1363PubMedCrossRef
go back to reference Bélanger M, Allaman I, Magistretti Pierre J (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738PubMedCrossRef Bélanger M, Allaman I, Magistretti Pierre J (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738PubMedCrossRef
go back to reference Bender DB, Youakim M (2001) Effect of attentive fixation in macaque thalamus and cortex. J Neurophysiol 85(1):219–234PubMed Bender DB, Youakim M (2001) Effect of attentive fixation in macaque thalamus and cortex. J Neurophysiol 85(1):219–234PubMed
go back to reference Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7(2):106–114PubMedCrossRef Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7(2):106–114PubMedCrossRef
go back to reference Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: i. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287(4):393–421PubMedCrossRef Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: i. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287(4):393–421PubMedCrossRef
go back to reference Chen LM, Heider B, Williams GV, Healy FL, Ramsden BM, Roe AW (2002) A chamber and artificial dura method for long-term optical imaging in the monkey. J Neurosci Meth 113:41–49CrossRef Chen LM, Heider B, Williams GV, Healy FL, Ramsden BM, Roe AW (2002) A chamber and artificial dura method for long-term optical imaging in the monkey. J Neurosci Meth 113:41–49CrossRef
go back to reference Chen LM, Turner GH, Friedman RM, Zhang N, Gore JC, Roe AW, Avison MJ (2007) High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging. J Neurosci 27(34):9181–9191PubMedCrossRef Chen LM, Turner GH, Friedman RM, Zhang N, Gore JC, Roe AW, Avison MJ (2007) High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging. J Neurosci 27(34):9181–9191PubMedCrossRef
go back to reference Chen J, Reitzen SD, Kohlenstein JB, Gardner EP (2009) Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey. J Neurophysiol 102(6):3310–3328PubMedCrossRef Chen J, Reitzen SD, Kohlenstein JB, Gardner EP (2009) Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey. J Neurophysiol 102(6):3310–3328PubMedCrossRef
go back to reference Chen-Bee CH, Agoncillo T, Xiong Y, Frostig RD (2007) The triphasic intrinsic signal: implications for functional imaging. J Neurosci 27(17):4572–4586PubMedCrossRef Chen-Bee CH, Agoncillo T, Xiong Y, Frostig RD (2007) The triphasic intrinsic signal: implications for functional imaging. J Neurosci 27(17):4572–4586PubMedCrossRef
go back to reference Das A, Sirotin YB (2011) What could underlie the trial-related signal? A response to the commentaries by Drs. Kleinschmidt and Muller, and Drs. Handwerker and Bandettini. Neuroimage 55(4):1413–1418PubMedCentralPubMedCrossRef Das A, Sirotin YB (2011) What could underlie the trial-related signal? A response to the commentaries by Drs. Kleinschmidt and Muller, and Drs. Handwerker and Bandettini. Neuroimage 55(4):1413–1418PubMedCentralPubMedCrossRef
go back to reference Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431PubMedCrossRef Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431PubMedCrossRef
go back to reference DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20(15):5835–5840PubMed DeSouza JF, Dukelow SP, Gati JS, Menon RS, Andersen RA, Vilis T (2000) Eye position signal modulates a human parietal pointing region during memory-guided movements. J Neurosci 20(15):5835–5840PubMed
go back to reference Devor A, Hillman EMC, Tian P, Waeber C, Teng IC, Ruvinskaya L, Shalinsky MH, Zhu H, Haslinger RH, Narayanan SN, Ulbert I, Dunn AK, Lo EH, Rosen BR, Dale AM, Kleinfeld D, Boas DA (2008) Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 28(53):14347–14357PubMedCentralPubMedCrossRef Devor A, Hillman EMC, Tian P, Waeber C, Teng IC, Ruvinskaya L, Shalinsky MH, Zhu H, Haslinger RH, Narayanan SN, Ulbert I, Dunn AK, Lo EH, Rosen BR, Dale AM, Kleinfeld D, Boas DA (2008) Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci 28(53):14347–14357PubMedCentralPubMedCrossRef
go back to reference Devor A, Sakadzic S, Saisan PA, Yaseen MA, Roussakis E, Srinivasan VJ, Vinogradov SA, Rosen BR, Buxton RB, Dale AM, Boas DA (2011) “Overshoot” of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J Neurosci 31(38):13676–13681PubMedCentralPubMedCrossRef Devor A, Sakadzic S, Saisan PA, Yaseen MA, Roussakis E, Srinivasan VJ, Vinogradov SA, Rosen BR, Buxton RB, Dale AM, Boas DA (2011) “Overshoot” of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J Neurosci 31(38):13676–13681PubMedCentralPubMedCrossRef
go back to reference Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7:432–452PubMedCrossRef Elston GN, Rosa MGP (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7:432–452PubMedCrossRef
go back to reference Fabbri S, Caramazza A, Lingnau A (2010) Tuning curves for movement direction in the human visuomotor system. J Neurosci 30(40):13488–13498PubMedCrossRef Fabbri S, Caramazza A, Lingnau A (2010) Tuning curves for movement direction in the human visuomotor system. J Neurosci 30(40):13488–13498PubMedCrossRef
go back to reference Fabbri S, Caramazza A, Lingnau A (2012) Distributed sensitivity for movement amplitude in directionally tuned neuronal populations. J Neurophysiol 107(7):1845–1856PubMedCrossRef Fabbri S, Caramazza A, Lingnau A (2012) Distributed sensitivity for movement amplitude in directionally tuned neuronal populations. J Neurophysiol 107(7):1845–1856PubMedCrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef
go back to reference Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640PubMedCrossRef Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640PubMedCrossRef
go back to reference Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324(6095):361–364PubMedCrossRef Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324(6095):361–364PubMedCrossRef
go back to reference Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal activity. Physiol Rev 68(4):1285–1366PubMed Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal activity. Physiol Rev 68(4):1285–1366PubMed
go back to reference Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100(3):1059–1064PubMedCrossRef Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100(3):1059–1064PubMedCrossRef
go back to reference Handwerker DA, Bandettini PA (2011) Simple explanations before complex theories: alternative interpretations of Sirotin and Das’ observations. Neuroimage 55(4):1419–1422PubMedCentralPubMedCrossRef Handwerker DA, Bandettini PA (2011) Simple explanations before complex theories: alternative interpretations of Sirotin and Das’ observations. Neuroimage 55(4):1419–1422PubMedCentralPubMedCrossRef
go back to reference Harris S, Jones M, Zheng Y, Berwick J (2010) Does neural input or processing play a greater role in the magnitude of neuroimaging signals? Front Neuroenergetics 2 doi:10.3389/fnene.2010.00015 Harris S, Jones M, Zheng Y, Berwick J (2010) Does neural input or processing play a greater role in the magnitude of neuroimaging signals? Front Neuroenergetics 2 doi:10.​3389/​fnene.​2010.​00015
go back to reference Heider B, Jandó G, Siegel RM (2005) Functional architecture of retinotopy in visual association cortex of behaving monkey. Cereb Cortex 15(4):460–478PubMedCentralPubMedCrossRef Heider B, Jandó G, Siegel RM (2005) Functional architecture of retinotopy in visual association cortex of behaving monkey. Cereb Cortex 15(4):460–478PubMedCentralPubMedCrossRef
go back to reference Heider B, Karnik A, Ramalingam N, Siegel RM (2010a) Neural representation during visually guided reaching in macaque posterior parietal cortex. J Neurophysiol 104(6):3494–3509PubMedCrossRef Heider B, Karnik A, Ramalingam N, Siegel RM (2010a) Neural representation during visually guided reaching in macaque posterior parietal cortex. J Neurophysiol 104(6):3494–3509PubMedCrossRef
go back to reference Heider B, Nathanson JL, Isacoff EY, Callaway EM, Siegel RM (2010b) Two-photon imaging of calcium in virally transfected striate cortical neurons of behaving monkey. PLoS ONE 5(11):e13829PubMedCentralPubMedCrossRef Heider B, Nathanson JL, Isacoff EY, Callaway EM, Siegel RM (2010b) Two-photon imaging of calcium in virally transfected striate cortical neurons of behaving monkey. PLoS ONE 5(11):e13829PubMedCentralPubMedCrossRef
go back to reference Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206(2):287–303PubMedCrossRef Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206(2):287–303PubMedCrossRef
go back to reference Hyvärinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–692PubMedCrossRef Hyvärinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97:673–692PubMedCrossRef
go back to reference Iwamura Y, Tanaka M (1996) Representation of reaching and grasping in the monkey postcentral gyrus. Neurosci Lett 214(2–3):147–150PubMedCrossRef Iwamura Y, Tanaka M (1996) Representation of reaching and grasping in the monkey postcentral gyrus. Neurosci Lett 214(2–3):147–150PubMedCrossRef
go back to reference Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6(2):102–119PubMedCrossRef Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6(2):102–119PubMedCrossRef
go back to reference Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255(5051):1517–1523PubMedCrossRef Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255(5051):1517–1523PubMedCrossRef
go back to reference Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137PubMedCrossRef Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428(1):112–137PubMedCrossRef
go back to reference Li C-Y, Tanaka M, Creutzfeldt OD (1989) Attention and eye movement related activation of neurons in the dorsal prelunate gyrus (area DP). Brain Res 496(1–2):307–313PubMedCrossRef Li C-Y, Tanaka M, Creutzfeldt OD (1989) Attention and eye movement related activation of neurons in the dorsal prelunate gyrus (area DP). Brain Res 496(1–2):307–313PubMedCrossRef
go back to reference Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157PubMedCrossRef Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157PubMedCrossRef
go back to reference MacKay WA (1992) Properties of reach-related neuronal activity in cortical area 7A. J Neurophysiol 67(5):1335–1345PubMed MacKay WA (1992) Properties of reach-related neuronal activity in cortical area 7A. J Neurophysiol 67(5):1335–1345PubMed
go back to reference MacKay WA, Mendonca AJ (1995) Field potential oscillatory bursts in parietal cortex before and during reach. Brain Res 704(2):167–174PubMedCrossRef MacKay WA, Mendonca AJ (1995) Field potential oscillatory bursts in parietal cortex before and during reach. Brain Res 704(2):167–174PubMedCrossRef
go back to reference Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA 94(26):14826–14831PubMedCrossRef Malonek D, Dirnagl U, Lindauer U, Yamada K, Kanno I, Grinvald A (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA 94(26):14826–14831PubMedCrossRef
go back to reference Marzocchi N, Breveglieri R, Galletti C, Fattori P (2008) Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur J Neurosci 27(3):775–789PubMedCentralPubMedCrossRef Marzocchi N, Breveglieri R, Galletti C, Fattori P (2008) Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? Eur J Neurosci 27(3):775–789PubMedCentralPubMedCrossRef
go back to reference Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421(6921):370–373PubMedCrossRef Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421(6921):370–373PubMedCrossRef
go back to reference Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMed Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMed
go back to reference Mountcastle VB, Andersen RA, Motter BC (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 1(11):1218–1225PubMed Mountcastle VB, Andersen RA, Motter BC (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 1(11):1218–1225PubMed
go back to reference Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309(5736):948–951PubMedCrossRef Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309(5736):948–951PubMedCrossRef
go back to reference Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204(2):196–210PubMedCrossRef Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204(2):196–210PubMedCrossRef
go back to reference Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5(8):805–811PubMedCrossRef Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5(8):805–811PubMedCrossRef
go back to reference Quraishi S, Heider B, Siegel RM (2007) Attentional modulation of receptive field structure in area 7a of the behaving monkey. Cereb Cortex 17(8):1841–1857PubMedCentralPubMedCrossRef Quraishi S, Heider B, Siegel RM (2007) Attentional modulation of receptive field structure in area 7a of the behaving monkey. Cereb Cortex 17(8):1841–1857PubMedCentralPubMedCrossRef
go back to reference Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Meth 36(2–3):127–137CrossRef Ratzlaff EH, Grinvald A (1991) A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Meth 36(2–3):127–137CrossRef
go back to reference Read HL, Siegel RM (1997) Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. Cereb Cortex 7(7):647–661PubMedCrossRef Read HL, Siegel RM (1997) Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. Cereb Cortex 7(7):647–661PubMedCrossRef
go back to reference Roe AW, Ts’o DY (1999) Specificity of color connectivity between primate V1 and V2. J Neurophysiol 82(5):2719–2730PubMed Roe AW, Ts’o DY (1999) Specificity of color connectivity between primate V1 and V2. J Neurophysiol 82(5):2719–2730PubMed
go back to reference Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417PubMedCrossRef Rozzi S, Calzavara R, Belmalih A, Borra E, Gregoriou GG, Matelli M, Luppino G (2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex 16(10):1389–1417PubMedCrossRef
go back to reference Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15(6):4464–4487PubMed Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15(6):4464–4487PubMed
go back to reference Scherberger H, Goodale MA, Andersen RA (2003) Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. J Neurophysiol 89(3):1456–1466PubMedCrossRef Scherberger H, Goodale MA, Andersen RA (2003) Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. J Neurophysiol 89(3):1456–1466PubMedCrossRef
go back to reference Scherberger H, Jarvis MR, Andersen RA (2005) Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron 46(2):347–354PubMedCrossRef Scherberger H, Jarvis MR, Andersen RA (2005) Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron 46(2):347–354PubMedCrossRef
go back to reference Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cogn Brain Res 14(1):187–198CrossRef Schroeder CE, Foxe JJ (2002) The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cogn Brain Res 14(1):187–198CrossRef
go back to reference Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643PubMedCrossRef Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643PubMedCrossRef
go back to reference Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning, computational neuroscience. The MIT Press, Cambridge Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation for motor learning, computational neuroscience. The MIT Press, Cambridge
go back to reference Shipp S, Adams DL, Moutoussis K, Zeki S (2009) Feature binding in the feedback layers of area V2. Cereb Cortex 19(10):2230–2239PubMedCrossRef Shipp S, Adams DL, Moutoussis K, Zeki S (2009) Feature binding in the feedback layers of area V2. Cereb Cortex 19(10):2230–2239PubMedCrossRef
go back to reference Shoham D, Grinvald A (2001) The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging. J Neurosci 21(17):6820–6835PubMed Shoham D, Grinvald A (2001) The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging. J Neurosci 21(17):6820–6835PubMed
go back to reference Shtoyerman E, Arieli A, Slovin H, Vanzetta I, Grinvald A (2000) Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J Neurosci 20(21):8111–8121PubMed Shtoyerman E, Arieli A, Slovin H, Vanzetta I, Grinvald A (2000) Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J Neurosci 20(21):8111–8121PubMed
go back to reference Siegel RM, Raffi M, Phinney RE, Turner JA, Jandó G (2003) Functional architecture of eye position gain fields in visual association cortex of behaving monkey. J Neurophysiol 90(2):1279–1294PubMedCrossRef Siegel RM, Raffi M, Phinney RE, Turner JA, Jandó G (2003) Functional architecture of eye position gain fields in visual association cortex of behaving monkey. J Neurophysiol 90(2):1279–1294PubMedCrossRef
go back to reference Siegel RM, Duann JR, Jung TP, Sejnowski T (2007) Spatiotemporal dynamics of the functional architecture for gain fields in inferior parietal lobule of behaving monkey. Cereb Cortex 17(2):378–390PubMedCentralPubMedCrossRef Siegel RM, Duann JR, Jung TP, Sejnowski T (2007) Spatiotemporal dynamics of the functional architecture for gain fields in inferior parietal lobule of behaving monkey. Cereb Cortex 17(2):378–390PubMedCentralPubMedCrossRef
go back to reference Sirotin YB, Hillman EMC, Bordier C, Das A (2009) Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates. Proc Natl Acad Sci USA 106(43):18390–18395PubMedCrossRef Sirotin YB, Hillman EMC, Bordier C, Das A (2009) Spatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates. Proc Natl Acad Sci USA 106(43):18390–18395PubMedCrossRef
go back to reference Sirotin YB, Cardoso M, Lima B, Das A (2012) Spatial homogeneity and task-synchrony of the trial-related hemodynamic signal. Neuroimage 59(3):2783–2797PubMedCentralPubMedCrossRef Sirotin YB, Cardoso M, Lima B, Das A (2012) Spatial homogeneity and task-synchrony of the trial-related hemodynamic signal. Neuroimage 59(3):2783–2797PubMedCentralPubMedCrossRef
go back to reference Snyder LH, Dickinson AR, Calton JL (2006) Preparatory delay activity in the monkey parietal reach region predicts reach reaction times. J Neurosci 26(40):10091–10099PubMedCrossRef Snyder LH, Dickinson AR, Calton JL (2006) Preparatory delay activity in the monkey parietal reach region predicts reach reaction times. J Neurosci 26(40):10091–10099PubMedCrossRef
go back to reference Steinmetz MA, Constantinidis C (1995) Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb Cortex 5(5):448–456PubMedCrossRef Steinmetz MA, Constantinidis C (1995) Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. Cereb Cortex 5(5):448–456PubMedCrossRef
go back to reference Stepniewska I, Collins CE, Kaas JH (2005) Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. Cereb Cortex 15(6):809–822PubMedCrossRef Stepniewska I, Collins CE, Kaas JH (2005) Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. Cereb Cortex 15(6):809–822PubMedCrossRef
go back to reference Tanaka M, Weber H, Creutzfeldt OD (1986) Visual properties and spatial distribution of neurones in the visual association area on the prelunate gyrus of the awake monkey. Exp Brain Res 65:11–37PubMedCrossRef Tanaka M, Weber H, Creutzfeldt OD (1986) Visual properties and spatial distribution of neurones in the visual association area on the prelunate gyrus of the awake monkey. Exp Brain Res 65:11–37PubMedCrossRef
go back to reference Tommerdahl M, Delemos KA, Whitsel BL, Favorov OV, Metz CB (1999) Response of anterior parietal cortex to cutaneous flutter versus vibration. J Neurophysiol 82(1):16–33PubMed Tommerdahl M, Delemos KA, Whitsel BL, Favorov OV, Metz CB (1999) Response of anterior parietal cortex to cutaneous flutter versus vibration. J Neurophysiol 82(1):16–33PubMed
go back to reference Vanzetta I, Slovin H, Omer DB, Grinvald A (2004) Columnar resolution of blood volume and oximetry functional maps in the behaving monkey: implications for fMRI. Neuron 42(5):843–854PubMedCrossRef Vanzetta I, Slovin H, Omer DB, Grinvald A (2004) Columnar resolution of blood volume and oximetry functional maps in the behaving monkey: implications for fMRI. Neuron 42(5):843–854PubMedCrossRef
go back to reference Wang G, Nagai M, Okamura J (2011) Orientation dependency of intrinsic optical signal dynamics in cat area 18. Neuroimage 57(3):1140–1153PubMedCrossRef Wang G, Nagai M, Okamura J (2011) Orientation dependency of intrinsic optical signal dynamics in cat area 18. Neuroimage 57(3):1140–1153PubMedCrossRef
go back to reference Winship IR, Plaa N, Murphy TH (2007) Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 27(23):6268–6272PubMedCrossRef Winship IR, Plaa N, Murphy TH (2007) Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 27(23):6268–6272PubMedCrossRef
go back to reference Yokoo T, Knight BW, Sirovich L (2001) An optimization approach to signal extraction from noisy multivariate data. Neuroimage 14(6):1309–1326PubMedCrossRef Yokoo T, Knight BW, Sirovich L (2001) An optimization approach to signal extraction from noisy multivariate data. Neuroimage 14(6):1309–1326PubMedCrossRef
go back to reference Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs
go back to reference Zhan CA, Ledgeway T, Baker CL Jr (2005) Contrast response in visual cortex: quantitative assessment with intrinsic optical signal imaging and neural firing. Neuroimage 26(2):330–346PubMedCrossRef Zhan CA, Ledgeway T, Baker CL Jr (2005) Contrast response in visual cortex: quantitative assessment with intrinsic optical signal imaging and neural firing. Neuroimage 26(2):330–346PubMedCrossRef
Metadata
Title
Optical imaging of visually guided reaching in macaque posterior parietal cortex
Authors
Barbara Heider
Ralph M. Siegel
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0513-y

Other articles of this Issue 2/2014

Brain Structure and Function 2/2014 Go to the issue