Skip to main content
Top
Published in: Neurocritical Care 1/2015

01-02-2015 | Translational Research

Only Very Early Oxygen Therapy Attenuates Posthemorrhagic Edema Formation and Blood–Brain Barrier Disruption in Murine Intracerebral Hemorrhage

Authors: Wei Zhou, Marilena Marinescu, Roland Veltkamp

Published in: Neurocritical Care | Issue 1/2015

Login to get access

Abstract

Background and purpose

Perihematomal edema exacerbates the mass effect of hematoma and contributes to early neurological deterioration after intracerebral hemorrhage (ICH). Oxygen therapy has protective effects on the blood–brain barrier (BBB). We aimed to examine the effects of oxygen therapy on edema formation and BBB permeability after ICH.

Methods

ICH was induced in mice by injecting autologous blood (30 µL) or collagenase (0.03 U) intrastriatally. Development of posthemorrhagic edema formation and BBB disruption was characterized by wet-dry-weight assays and sodium- fluorescein fluorospectrometry 1d, 3d, and 7d after ICH induction. In subsequent experiments, mice received air, normobaric (NBO), or hyperbaric oxygen (HBO; 3ata) for 60 min starting either 30, 60, or 120 min after ICH induction. Expression of occludin, claudin-5, zonula occludens-1, matrix metalloproteinases (MMPs), and hypoxia-inducible factor-1α (HIF-1α) was measured by Western blot and zymography.

Results

Posthemorrhagic edema formation (water content: blood-injection model 80.6 ± 0.3 %; collagenase injection model 83.3 ± 0.7 %) and BBB disruption (interhemispheric ratio of extravasated sodium fluorescein: blood-injection model 1.75 ± 0.07; collagenase injection model 3.02 ± 0.15) peaked 3d after ICH. NBO and HBO initiated within 30 min of ICH induction attenuated edema formation and BBB disruption (interhemispheric ratio of fluorescein; blood-injection air 1.75 ± 0.12, NBO 1.52 ± 0.08, HBO 1.49 ± 0.09; collagenase: air 3.04 ± 0.23, NBO 2.25 ± 0.21, HBO 2.17 ± 0.23) 3d after ICH, whereas delayed oxygen therapy had no effect. Early oxygen therapies prevented occludin degradation, MMP-9 activation, and reduced HIF-1α expression.

Conclusion

Very early oxygen therapy can attenuate edema formation and BBB disruption after ICH, but the brief therapeutic time window suggests that the translational potential is limited.
Literature
1.
go back to reference Broderick J, Connolly S, Feldmann E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults. Stroke. 2007;38:2001–23.PubMedCrossRef Broderick J, Connolly S, Feldmann E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults. Stroke. 2007;38:2001–23.PubMedCrossRef
3.
go back to reference Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994;44:1379.PubMedCrossRef Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994;44:1379.PubMedCrossRef
4.
go back to reference Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.PubMedCrossRef Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.PubMedCrossRef
5.
go back to reference Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.PubMedCrossRef Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.PubMedCrossRef
6.
go back to reference Veltkamp R, Siebing DA, Sun L, et al. Hyperbaric oxygen reduces blood–brain barrier damage and edema after transient focal cerebral ischemia. Stroke. 2005;36:1679–83.PubMedCrossRef Veltkamp R, Siebing DA, Sun L, et al. Hyperbaric oxygen reduces blood–brain barrier damage and edema after transient focal cerebral ischemia. Stroke. 2005;36:1679–83.PubMedCrossRef
7.
go back to reference Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002;58:945–52.PubMedCrossRef Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002;58:945–52.PubMedCrossRef
8.
go back to reference Liu W, Hendren J, Qin X-J, Shen J, Liu KJ. Normobaric hyperoxia attenuates early blood–brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009;108:811–20.PubMedCentralPubMedCrossRef Liu W, Hendren J, Qin X-J, Shen J, Liu KJ. Normobaric hyperoxia attenuates early blood–brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem. 2009;108:811–20.PubMedCentralPubMedCrossRef
9.
go back to reference Ostrowski RP, Colohan ART, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:554–71.PubMedCrossRef Ostrowski RP, Colohan ART, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:554–71.PubMedCrossRef
10.
go back to reference Niklas A, Brock D, Schober R, Schulz A, Schneider D. Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation: HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci. 2004;219:77–82.PubMedCrossRef Niklas A, Brock D, Schober R, Schulz A, Schneider D. Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation: HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci. 2004;219:77–82.PubMedCrossRef
11.
go back to reference Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:113–7.PubMedCrossRef Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:113–7.PubMedCrossRef
12.
go back to reference Qin Z, Song S, Xi G, et al. Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus. 2007;22:1–6.CrossRef Qin Z, Song S, Xi G, et al. Preconditioning with hyperbaric oxygen attenuates brain edema after experimental intracerebral hemorrhage. Neurosurg Focus. 2007;22:1–6.CrossRef
13.
go back to reference Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res. 2010;1320:135–42.PubMedCrossRef Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res. 2010;1320:135–42.PubMedCrossRef
14.
go back to reference Yang G-Y, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg. 1994;81:93–102.PubMedCrossRef Yang G-Y, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood–brain barrier permeability in rats. J Neurosurg. 1994;81:93–102.PubMedCrossRef
15.
go back to reference Schallert T, Upchurch M, Wilcox RE, Vaughn DM. Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav. 1983;18:753–9.PubMedCrossRef Schallert T, Upchurch M, Wilcox RE, Vaughn DM. Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav. 1983;18:753–9.PubMedCrossRef
16.
go back to reference Sun L, Zhou W, Mueller C, et al. Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1651–60.PubMedCentralPubMedCrossRef Sun L, Zhou W, Mueller C, et al. Oxygen therapy reduces secondary hemorrhage after thrombolysis in thromboembolic cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:1651–60.PubMedCentralPubMedCrossRef
18.
go back to reference Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, Xi G. Hypoxia-inducible factor-1a accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22:689–96.PubMedCrossRef Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, Xi G. Hypoxia-inducible factor-1a accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22:689–96.PubMedCrossRef
19.
go back to reference Enzmann DR, Britt RH, Lyons BE, Buxton JL, Wilson DA. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. Am J Neuroradiol. 1981;2:517–26.PubMed Enzmann DR, Britt RH, Lyons BE, Buxton JL, Wilson DA. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology. Am J Neuroradiol. 1981;2:517–26.PubMed
20.
go back to reference Tomita H, Ito U, Ohno K, Hirakawa K. Chronological changes in brain edema induced by experimental intracerebral hematoma in cats. Acta Neurochir Suppl. 1994;60:558–60.PubMed Tomita H, Ito U, Ohno K, Hirakawa K. Chronological changes in brain edema induced by experimental intracerebral hematoma in cats. Acta Neurochir Suppl. 1994;60:558–60.PubMed
21.
go back to reference Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.PubMedCrossRef Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.PubMedCrossRef
22.
go back to reference Venkatasubramanian C, Mlynash M, Finley-Caulfield A, et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42:73–80.PubMedCentralPubMedCrossRef Venkatasubramanian C, Mlynash M, Finley-Caulfield A, et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42:73–80.PubMedCentralPubMedCrossRef
23.
go back to reference Bauer AT, Burgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30:837–48.PubMedCentralPubMedCrossRef Bauer AT, Burgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30:837–48.PubMedCentralPubMedCrossRef
24.
go back to reference Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke. 2004;35:578–83.PubMedCrossRef Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke. 2004;35:578–83.PubMedCrossRef
25.
go back to reference Badr A, Yin W, Mychaskiw G, Zhang J. Dual effect of HBO on cerebral infarction in MCAO rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R766–70.PubMed Badr A, Yin W, Mychaskiw G, Zhang J. Dual effect of HBO on cerebral infarction in MCAO rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R766–70.PubMed
26.
go back to reference Wang X-L, Zhao Y-s, Yang Y-J, Xie M, Yu X-H. Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats. Brain Res. 2008;1222:87–94.PubMedCrossRef Wang X-L, Zhao Y-s, Yang Y-J, Xie M, Yu X-H. Therapeutic window of hyperbaric oxygen therapy for hypoxic-ischemic brain damage in newborn rats. Brain Res. 2008;1222:87–94.PubMedCrossRef
27.
go back to reference Veltkamp R, Bieber K, Wagner S, et al. Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res. 2006;1076:231–7.PubMedCrossRef Veltkamp R, Bieber K, Wagner S, et al. Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res. 2006;1076:231–7.PubMedCrossRef
28.
go back to reference Sun L, Marti HH, Veltkamp R. Hyperbaric oxygen reduces tissue hypoxia and hypoxia-inducible factor-1α expression in focal cerebral ischemia. Stroke. 2008;39:1000–6.PubMedCrossRef Sun L, Marti HH, Veltkamp R. Hyperbaric oxygen reduces tissue hypoxia and hypoxia-inducible factor-1α expression in focal cerebral ischemia. Stroke. 2008;39:1000–6.PubMedCrossRef
29.
go back to reference González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.PubMedCrossRef González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44.PubMedCrossRef
30.
go back to reference Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.PubMedCrossRef Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.PubMedCrossRef
31.
32.
go back to reference Valable S, Montaner J, Bellail A, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab. 2005;25:1491–504.PubMedCrossRef Valable S, Montaner J, Bellail A, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab. 2005;25:1491–504.PubMedCrossRef
33.
go back to reference Zhao B-Q, Wang S, Kim H-Y, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–5.PubMedCrossRef Zhao B-Q, Wang S, Kim H-Y, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–5.PubMedCrossRef
34.
go back to reference Yu Z, Chen L-F, Tang L, Hu C-L. Effects of recombinant adenovirus-mediated hypoxia-inducible factor-1alpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage. Asian Pac J Trop Med. 2013;6:762–7.PubMedCrossRef Yu Z, Chen L-F, Tang L, Hu C-L. Effects of recombinant adenovirus-mediated hypoxia-inducible factor-1alpha gene on proliferation and differentiation of endogenous neural stem cells in rats following intracerebral hemorrhage. Asian Pac J Trop Med. 2013;6:762–7.PubMedCrossRef
35.
go back to reference Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med. 2000;28:2831–6.PubMedCrossRef Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med. 2000;28:2831–6.PubMedCrossRef
36.
go back to reference Schäbitz W-R, Schade H, Heiland S, et al. Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke. 2004;35:1175–9.PubMedCrossRef Schäbitz W-R, Schade H, Heiland S, et al. Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke. 2004;35:1175–9.PubMedCrossRef
37.
go back to reference Hu Q, Liang X, Chen D, et al. Delayed hyperbaric oxygen therapy promotes neurogenesis through reactive oxygen species/hypoxia-inducible factor-1α/β-catenin pathway in middle cerebral artery occlusion rats. Stroke. 2014. Hu Q, Liang X, Chen D, et al. Delayed hyperbaric oxygen therapy promotes neurogenesis through reactive oxygen species/hypoxia-inducible factor-1α/β-catenin pathway in middle cerebral artery occlusion rats. Stroke. 2014.
Metadata
Title
Only Very Early Oxygen Therapy Attenuates Posthemorrhagic Edema Formation and Blood–Brain Barrier Disruption in Murine Intracerebral Hemorrhage
Authors
Wei Zhou
Marilena Marinescu
Roland Veltkamp
Publication date
01-02-2015
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2015
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-014-0013-9

Other articles of this Issue 1/2015

Neurocritical Care 1/2015 Go to the issue