Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Observation of Zn-photoprotoporphyrin red Autofluorescence in human bronchial cancer using color-fluorescence endoscopy

Authors: Yoshinobu Ohsaki, Takaaki Sasaki, Satoshi Endo, Masahiro Kitada, Shunsuke Okumura, Noriko Hirai, Yoshihiro Kazebayashi, Eri Toyoshima, Yasushi Yamamoto, Kaneyoshi Takeyama, Susumu Nakajima, Isao Sakata

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

We observed red autofluorescence emanating from bronchial cancer lesions using a sensitive color-fluorescence endoscopy system. We investigated to clarify the origin of the red autofluorescence.

Methods

The wavelengths of the red autofluorescence emanating from lesions were measured in eight patients using a spectrum analyzer and compared based on pathologic findings. Red autofluorescence at 617.3, 617.4, 619.0, and 617.1 nm was emitted by normal bronchus, inflamed tissue, tissue exhibiting mild dysplasia, and malignant lesions, respectively.
Protoporphyrin, uroporphyrin, and coproporphyrin, the major porphyrin derivatives in human blood, were purchased to determine which porphyrin derivative is the source of red fluorescence when acquired de novo. We synthesized photoporphyrin, Zn-protoporphyrin and Zn-photoprotoporphyrin from protoporphyrin.

Results

Coproporphyrin and uroporphyrin emitted only weak fluorescence. Fluorescence was emitted by our synthesized Zn-photoprotoporphyrin at 625.5 nm and by photoprotoporphyrin at 664.0 nm.

Conclusions

From these results, we conclude that Zn-photoprotoporphyrin was the source of the red autofluorescence observed in bronchial lesions. Zn-protoporphyrin is converted to Zn-photoprotoporphyrin by radiation with excitation light. Our results suggest that red autofluorescence emanating from Zn-photoprotoporphyrin in human tissues could interfere with photodynamic diagnosis using porphyrin derivatives such as Photofrin® and Lazerphyrin® with a sensitive endoscopy system, because color cameras cannot differentiate Zn-photoprotoporphyrin red fluorescence from that of other porphyrin derivatives.
Literature
1.
go back to reference Lakowicz JR. Principles of fluorescence spectroscopy. New York: Plemium Press; 1983.CrossRef Lakowicz JR. Principles of fluorescence spectroscopy. New York: Plemium Press; 1983.CrossRef
2.
go back to reference Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, et al. Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential. Laser Surg Med. 1992;12:63–78.CrossRef Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, et al. Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential. Laser Surg Med. 1992;12:63–78.CrossRef
3.
go back to reference Palcic B, Lam S, Hung J, MacAulay C. Detection and localization of early lung cancer by imaging techniques. Chest. 1991;99:742–3.CrossRefPubMed Palcic B, Lam S, Hung J, MacAulay C. Detection and localization of early lung cancer by imaging techniques. Chest. 1991;99:742–3.CrossRefPubMed
5.
go back to reference Kakihana M, Li KK, Okunaka T, Furukawa K, Hirano T, Konaka C, et al. Early detection of bronchial lesions using system of fluorescence endoscopy (SAFE) 1000. Diagn Ther Endosc. 1999;5:99–104.CrossRefPubMedPubMedCentral Kakihana M, Li KK, Okunaka T, Furukawa K, Hirano T, Konaka C, et al. Early detection of bronchial lesions using system of fluorescence endoscopy (SAFE) 1000. Diagn Ther Endosc. 1999;5:99–104.CrossRefPubMedPubMedCentral
7.
go back to reference Leonhard M. New incoherent autofluorescence/fluorescence system for early detection of lung cancer. Diagn Ther Endosc. 1999;5:113–8.CrossRef Leonhard M. New incoherent autofluorescence/fluorescence system for early detection of lung cancer. Diagn Ther Endosc. 1999;5:113–8.CrossRef
8.
go back to reference Chen W, Gao X, Tian Q, Chen L. A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis. Lung Cancer. 2010;73:183–8.CrossRef Chen W, Gao X, Tian Q, Chen L. A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis. Lung Cancer. 2010;73:183–8.CrossRef
9.
go back to reference Sun J, Garfield DH, Lam B, Yan J, Gu A, Shen J, et al. The value of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in the diagnosis of intraepithelial neoplasia and invasive lung cancer: a meta-analysis. J Thorac Oncol. 2011;6:1336–44.CrossRefPubMed Sun J, Garfield DH, Lam B, Yan J, Gu A, Shen J, et al. The value of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in the diagnosis of intraepithelial neoplasia and invasive lung cancer: a meta-analysis. J Thorac Oncol. 2011;6:1336–44.CrossRefPubMed
10.
go back to reference Aihara H, Sumiyama K, Saito S, Tajiri H, Ikegami M. Numerical analysis of the autofluorescence intensity of neoplastic and non-neoplastic colorectal lesions by using a novel videoendoscopy system. Gastrointest Endosc. 2009;69:726–33.CrossRefPubMed Aihara H, Sumiyama K, Saito S, Tajiri H, Ikegami M. Numerical analysis of the autofluorescence intensity of neoplastic and non-neoplastic colorectal lesions by using a novel videoendoscopy system. Gastrointest Endosc. 2009;69:726–33.CrossRefPubMed
11.
go back to reference Ohsaki Y, Nishigaki Y, Takeyama K, Nakanishi K, Ide H, Matsumoto H, et al. Visualization of cancer using high sensitive fluorodynamic camera and fiber-optic endoscope. Porphyrins. 2000;9:197–203. Ohsaki Y, Nishigaki Y, Takeyama K, Nakanishi K, Ide H, Matsumoto H, et al. Visualization of cancer using high sensitive fluorodynamic camera and fiber-optic endoscope. Porphyrins. 2000;9:197–203.
12.
go back to reference Ohsaki Y, Takeyama K, Nakao S, Tanno S, Toyoshima E, Nakanishi K, et al. Detection of photofrin fluorescence from malignant and premalignant lesions in the bronchus using a full-color endoscopic fluorescence imaging system: a preliminary report. Diagn Ther Endosc. 2001;7:187–95.CrossRefPubMedPubMedCentral Ohsaki Y, Takeyama K, Nakao S, Tanno S, Toyoshima E, Nakanishi K, et al. Detection of photofrin fluorescence from malignant and premalignant lesions in the bronchus using a full-color endoscopic fluorescence imaging system: a preliminary report. Diagn Ther Endosc. 2001;7:187–95.CrossRefPubMedPubMedCentral
13.
go back to reference Nakanishi K, Ohsaki Y, Kurihara M, Nakao S, Fujita Y, Takeyama K, et al. Color auto-fluorescence from cancer lesions: improved detection of central type lung cancer. Lung Cancer. 2007;58:214–9.CrossRefPubMed Nakanishi K, Ohsaki Y, Kurihara M, Nakao S, Fujita Y, Takeyama K, et al. Color auto-fluorescence from cancer lesions: improved detection of central type lung cancer. Lung Cancer. 2007;58:214–9.CrossRefPubMed
14.
go back to reference Ghadially FN, Neish WJP. Porphyrin fluorescence of experimentally produced squamous cell carcinoma. Nature. 1960;188:1124.CrossRefPubMed Ghadially FN, Neish WJP. Porphyrin fluorescence of experimentally produced squamous cell carcinoma. Nature. 1960;188:1124.CrossRefPubMed
15.
go back to reference Lycette RM, Leslie RB. Fluorescence of malignant tissue. Lancet. 1965;286:436.CrossRef Lycette RM, Leslie RB. Fluorescence of malignant tissue. Lancet. 1965;286:436.CrossRef
16.
go back to reference Bottiroli G, Croce AC, Marchesini R, Pignoli E, Tomatis S, Cuzzoni C, et al. Natural fluorescence of normal and neoplastic human colon: a comprehensive 'ex vivo' study. Lasers Surg Med. 1995;16:48–60.CrossRefPubMed Bottiroli G, Croce AC, Marchesini R, Pignoli E, Tomatis S, Cuzzoni C, et al. Natural fluorescence of normal and neoplastic human colon: a comprehensive 'ex vivo' study. Lasers Surg Med. 1995;16:48–60.CrossRefPubMed
17.
go back to reference Croce AC, Santamaria G, De Simone U, Lucchini F, Freitas I, Bottiroli G. Naturally-occurring porphyrins in a spontaneous-tumour bearing mouse model. Photochem Photobiol Sci. 2011;10:1189–95.CrossRefPubMed Croce AC, Santamaria G, De Simone U, Lucchini F, Freitas I, Bottiroli G. Naturally-occurring porphyrins in a spontaneous-tumour bearing mouse model. Photochem Photobiol Sci. 2011;10:1189–95.CrossRefPubMed
18.
go back to reference Moesta KT, Ebert B, Handke T, Nolte D, Nowak C, Haensch WE, et al. Protoporphyrin IX occurs naturally in colorectal cancers and their metastases. Cancer Res. 2001;61:991–9.PubMed Moesta KT, Ebert B, Handke T, Nolte D, Nowak C, Haensch WE, et al. Protoporphyrin IX occurs naturally in colorectal cancers and their metastases. Cancer Res. 2001;61:991–9.PubMed
19.
go back to reference Shibukawa K, Miyokawa N, Tokusashi Y, Sasaki T, Osanai S, Ohsaki Y. High incidence of chromosomal abnormalities at 1p36 and 9p21 in early-stage central type squamous cell carcinoma and squamous dysplasia of bronchus detected by autofluorescence bronchoscopy. Oncol Rep. 2009;22:81–7.PubMed Shibukawa K, Miyokawa N, Tokusashi Y, Sasaki T, Osanai S, Ohsaki Y. High incidence of chromosomal abnormalities at 1p36 and 9p21 in early-stage central type squamous cell carcinoma and squamous dysplasia of bronchus detected by autofluorescence bronchoscopy. Oncol Rep. 2009;22:81–7.PubMed
20.
go back to reference Dolphin D, Sivasothy R. The preparation of porphyrin S-411 (dehydrocoproporphyrin) and harderoporphyrin from protoporphyrin IX. Can J Chem. 1981;59:779–85.CrossRef Dolphin D, Sivasothy R. The preparation of porphyrin S-411 (dehydrocoproporphyrin) and harderoporphyrin from protoporphyrin IX. Can J Chem. 1981;59:779–85.CrossRef
21.
go back to reference Nakae Y, Fukusaki E-I, Kajiyama S-I, Kobayashi A, Nakajima S, Sakata I. Syntheses and screening tests of new chlorin derivatives as photosensitizer. J Photochem Photobiol A. 2005;174:187–93.CrossRef Nakae Y, Fukusaki E-I, Kajiyama S-I, Kobayashi A, Nakajima S, Sakata I. Syntheses and screening tests of new chlorin derivatives as photosensitizer. J Photochem Photobiol A. 2005;174:187–93.CrossRef
23.
go back to reference Falk JE, Smith KM. Porphyrins and metalloporphyrins. Revised ed. Elsevier Science; 1975. p. 688–689. Falk JE, Smith KM. Porphyrins and metalloporphyrins. Revised ed. Elsevier Science; 1975. p. 688–689.
24.
go back to reference Ghadially FN, Neish WJP, Dawkins HC. Mechanisms involved in the production of red fluorescence of human and experimental tumors. J Pathol Bacteriol. 1963;85:77–92.CrossRefPubMed Ghadially FN, Neish WJP, Dawkins HC. Mechanisms involved in the production of red fluorescence of human and experimental tumors. J Pathol Bacteriol. 1963;85:77–92.CrossRefPubMed
25.
go back to reference Kluftinger AM, Davis NL, Quenville NF, Lam S, Hung J, Palcic B. Detection of squamous cell cancer and pre-cancerous lesions by imaging of tissue autofluorescence in the hamster cheek pouch model. Surg Oncol. 1992;1:183–8.CrossRefPubMed Kluftinger AM, Davis NL, Quenville NF, Lam S, Hung J, Palcic B. Detection of squamous cell cancer and pre-cancerous lesions by imaging of tissue autofluorescence in the hamster cheek pouch model. Surg Oncol. 1992;1:183–8.CrossRefPubMed
27.
go back to reference Nakai Y, Anai S, Onishi S, Masaomi K, Tatsumi Y, Miyake M, et al. Protoporphyrin IX induced by 5-aminolevulinic acid in bladder cancer cells in voided urine can be extracorporeally quantified using a spectrophotometer. Photodiagn Photodyn Ther. 2015;12:282–8.CrossRef Nakai Y, Anai S, Onishi S, Masaomi K, Tatsumi Y, Miyake M, et al. Protoporphyrin IX induced by 5-aminolevulinic acid in bladder cancer cells in voided urine can be extracorporeally quantified using a spectrophotometer. Photodiagn Photodyn Ther. 2015;12:282–8.CrossRef
29.
go back to reference Suga RS, Fischinger AJ, Knoch FW. Establishment of normal values in adults for zinc protoporphyrin (ZPP) using hematofluorometer: correlation with normal blood lead values. Am Ind Hyg Assoc J. 1981;42:637–42.CrossRefPubMed Suga RS, Fischinger AJ, Knoch FW. Establishment of normal values in adults for zinc protoporphyrin (ZPP) using hematofluorometer: correlation with normal blood lead values. Am Ind Hyg Assoc J. 1981;42:637–42.CrossRefPubMed
30.
go back to reference Cox G, Whitten DG. Mechanisms for the photooxidation of protoporphyrin IX in solution. J Am Chem Soc. 1982;104:516–21.CrossRef Cox G, Whitten DG. Mechanisms for the photooxidation of protoporphyrin IX in solution. J Am Chem Soc. 1982;104:516–21.CrossRef
31.
go back to reference König K, Schneckenburger H, Rück A, Steiner R. In vivo photoproduct formation during PDT with ALA-induced endogenous porphyrins. J Photochem Photobiol B. 1993;18:287–90.CrossRefPubMed König K, Schneckenburger H, Rück A, Steiner R. In vivo photoproduct formation during PDT with ALA-induced endogenous porphyrins. J Photochem Photobiol B. 1993;18:287–90.CrossRefPubMed
32.
go back to reference Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM. Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem Photobiol. 1998;67:140–9.CrossRefPubMed Robinson DJ, de Bruijn HS, van der Veen N, Stringer MR, Brown SB, Star WM. Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: the effect of light dose and irradiance and the resulting biological effect. Photochem Photobiol. 1998;67:140–9.CrossRefPubMed
33.
go back to reference Kitada M, Ohsaki Y, Matsuda Y, Hayashi S, Ishibashi K. Photodynamic diagnosis of malignant pleural diseases using the autofluorescence imaging system. Ann Thorac Cardiovasc Surg. 2014;20:378–82.CrossRefPubMed Kitada M, Ohsaki Y, Matsuda Y, Hayashi S, Ishibashi K. Photodynamic diagnosis of malignant pleural diseases using the autofluorescence imaging system. Ann Thorac Cardiovasc Surg. 2014;20:378–82.CrossRefPubMed
34.
go back to reference Kitada M, Ohsaki Y, Matsuda Y, Hayashi S, Ishibashi K. Photodynamic diagnosis of pleural malignant lesions with a combination of 5-aminolevulinic acid and intrinsic fluorescence observation systems. BMC Cancer. 2015;15:174.CrossRefPubMedPubMedCentral Kitada M, Ohsaki Y, Matsuda Y, Hayashi S, Ishibashi K. Photodynamic diagnosis of pleural malignant lesions with a combination of 5-aminolevulinic acid and intrinsic fluorescence observation systems. BMC Cancer. 2015;15:174.CrossRefPubMedPubMedCentral
Metadata
Title
Observation of Zn-photoprotoporphyrin red Autofluorescence in human bronchial cancer using color-fluorescence endoscopy
Authors
Yoshinobu Ohsaki
Takaaki Sasaki
Satoshi Endo
Masahiro Kitada
Shunsuke Okumura
Noriko Hirai
Yoshihiro Kazebayashi
Eri Toyoshima
Yasushi Yamamoto
Kaneyoshi Takeyama
Susumu Nakajima
Isao Sakata
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3277-6

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine