Skip to main content
Top
Published in: Journal of Natural Medicines 1/2020

01-01-2020 | Obesity | Note

Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice

Authors: Rika Tsuhako, Hiroki Yoshida, Chihiro Sugita, Masahiko Kurokawa

Published in: Journal of Natural Medicines | Issue 1/2020

Login to get access

Abstract

Recruitment of immune cells to adipose tissue is altered dramatically in obesity, which results in chronic inflammation of the adipose tissue that leads to metabolic disorders, such as insulin resistance and type 2 diabetes mellitus. The regulation of immune cell infiltration into adipose tissue has prophylactic and therapeutic implications for obesity-related diseases. We previously showed that naringenin, a citrus flavonoid, suppressed macrophage infiltration into adipose tissue by inhibiting monocyte chemoattractant protein-1 (MCP-1) expression in the progression phase to high-fat diet (HFD)-induced obesity. In the current study, we evaluated the effects of naringenin on neutrophil infiltration into adipose tissue, because neutrophils also infiltrate into adipose tissue in the progression phase to obesity. Naringenin suppressed neutrophil infiltration into adipose tissue induced by the short-term (2 weeks) feeding of a HFD to mice. Naringenin tended to inhibit the HFD-induced expression of several chemokines, including MCP-1 and MCP-3, in adipose tissue. Naringenin also inhibited MCP-3 expression in 3T3-L1 adipocytes and a co-culture of 3T3-L1 adipocytes and RAW264 macrophages. However, naringenin did not affect the expression of macrophage inflammatory protein-2 (MIP-2), an important chemokine for neutrophil migration and activation, in macrophages or in a co-culture of adipocytes and macrophages. Our results suggest that naringenin suppresses neutrophil infiltration into adipose tissue via the regulation of MCP-3 expression and macrophage infiltration.
Literature
1.
go back to reference Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830CrossRef Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830CrossRef
2.
go back to reference Balistreri CR, Caruso C, Candore G (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat Inflamm 2010:802078CrossRef Balistreri CR, Caruso C, Candore G (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat Inflamm 2010:802078CrossRef
3.
go back to reference Surmi BK, Hasty AH (2010) The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vasc Pharmacol 52:27–36CrossRef Surmi BK, Hasty AH (2010) The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vasc Pharmacol 52:27–36CrossRef
4.
go back to reference Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRef Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRef
5.
go back to reference Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068CrossRef Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068CrossRef
6.
go back to reference Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88:33–39CrossRef Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88:33–39CrossRef
7.
go back to reference Elgazar-Carmon V, Rudich A, Hadad N, Levy R (2008) Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 49:1894–1903CrossRef Elgazar-Carmon V, Rudich A, Hadad N, Levy R (2008) Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res 49:1894–1903CrossRef
8.
go back to reference Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18:1407–1412CrossRef Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18:1407–1412CrossRef
9.
go back to reference Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Bluher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28:1304–1310CrossRef Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Bluher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28:1304–1310CrossRef
10.
go back to reference Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920CrossRef Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920CrossRef
11.
go back to reference Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J (2019) The therapeutic potential of naringenin: a review of clinical trials. Pharm (Basel) 12:11CrossRef Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, Sharifi-Rad J (2019) The therapeutic potential of naringenin: a review of clinical trials. Pharm (Basel) 12:11CrossRef
12.
go back to reference Kim TH, Kim GD, Ahn HJ, Cho JJ, Park YS, Park CS (2013) The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci 93:516–524CrossRef Kim TH, Kim GD, Ahn HJ, Cho JJ, Park YS, Park CS (2013) The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci 93:516–524CrossRef
13.
go back to reference Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D (2018) Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem 54:130–139CrossRef Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D (2018) Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem 54:130–139CrossRef
14.
go back to reference Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, Cunha TM, Alves-Filho JC, Cunha FQ, Casagrande R, Verri WA Jr (2016) The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-kappaB activation. J Nutr Biochem 33:8–14CrossRef Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, Cunha TM, Alves-Filho JC, Cunha FQ, Casagrande R, Verri WA Jr (2016) The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-kappaB activation. J Nutr Biochem 33:8–14CrossRef
15.
go back to reference Zhao M, Li C, Shen F, Wang M, Jia N, Wang C (2017) Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3 K/Akt pathway. Exp Ther Med 14:2228–2234CrossRef Zhao M, Li C, Shen F, Wang M, Jia N, Wang C (2017) Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3 K/Akt pathway. Exp Ther Med 14:2228–2234CrossRef
16.
go back to reference Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, Kai H (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 394:728–732CrossRef Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, Kai H (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem Biophys Res Commun 394:728–732CrossRef
17.
go back to reference Yoshida H, Watanabe W, Oomagari H, Tsuruta E, Shida M, Kurokawa M (2013) Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem 24:1276–1284CrossRef Yoshida H, Watanabe W, Oomagari H, Tsuruta E, Shida M, Kurokawa M (2013) Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem 24:1276–1284CrossRef
18.
go back to reference Yoshida H, Watanabe H, Ishida A, Watanabe W, Narumi K, Atsumi T, Sugita C, Kurokawa M (2014) Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity. Biochem Biophys Res Commun 454:95–101CrossRef Yoshida H, Watanabe H, Ishida A, Watanabe W, Narumi K, Atsumi T, Sugita C, Kurokawa M (2014) Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity. Biochem Biophys Res Commun 454:95–101CrossRef
19.
go back to reference Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumie A, Gual P, Wakkach A (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61:2238–2247CrossRef Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, Blin-Wakkach C, Anty R, Iannelli A, Gugenheim J, Tran A, Bouloumie A, Gual P, Wakkach A (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61:2238–2247CrossRef
20.
go back to reference Jiao P, Chen Q, Shah S, Du J, Tao B, Tzameli I, Yan W, Xu H (2009) Obesity-related upregulation of monocyte chemotactic factors in adipocytes: involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes 58:104–115CrossRef Jiao P, Chen Q, Shah S, Du J, Tao B, Tzameli I, Yan W, Xu H (2009) Obesity-related upregulation of monocyte chemotactic factors in adipocytes: involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes 58:104–115CrossRef
21.
go back to reference Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim JJ, Wang JM (1995) Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors: binding and signaling of MCP3 through shared as well as unique receptors on monocytes and neutrophils. Eur J Immunol 25:2612–2617CrossRef Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim JJ, Wang JM (1995) Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors: binding and signaling of MCP3 through shared as well as unique receptors on monocytes and neutrophils. Eur J Immunol 25:2612–2617CrossRef
22.
go back to reference Struyf S, Gouwy M, Dillen C, Proost P, Opdenakker G, Van Damme J (2005) Chemokines synergize in the recruitment of circulating neutrophils into inflamed tissue. Eur J Immunol 35:1583–1591CrossRef Struyf S, Gouwy M, Dillen C, Proost P, Opdenakker G, Van Damme J (2005) Chemokines synergize in the recruitment of circulating neutrophils into inflamed tissue. Eur J Immunol 35:1583–1591CrossRef
23.
go back to reference De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–4937CrossRef De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–4937CrossRef
24.
go back to reference Schiwon M, Weisheit C, Franken L, Gutweiler S, Dixit A, Meyer-Schwesinger C, Pohl JM, Maurice NJ, Thiebes S, Lorenz K, Quast T, Fuhrmann M, Baumgarten G, Lohse MJ, Opdenakker G, Bernhagen J, Bucala R, Panzer U, Kolanus W, Grone HJ, Garbi N, Kastenmuller W, Knolle PA, Kurts C, Engel DR (2014) Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156:456–468CrossRef Schiwon M, Weisheit C, Franken L, Gutweiler S, Dixit A, Meyer-Schwesinger C, Pohl JM, Maurice NJ, Thiebes S, Lorenz K, Quast T, Fuhrmann M, Baumgarten G, Lohse MJ, Opdenakker G, Bernhagen J, Bucala R, Panzer U, Kolanus W, Grone HJ, Garbi N, Kastenmuller W, Knolle PA, Kurts C, Engel DR (2014) Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156:456–468CrossRef
25.
go back to reference Kim ND, Luster AD (2015) The role of tissue resident cells in neutrophil recruitment. Trends Immunol 36:547–555CrossRef Kim ND, Luster AD (2015) The role of tissue resident cells in neutrophil recruitment. Trends Immunol 36:547–555CrossRef
26.
go back to reference Qin CC, Liu YN, Hu Y, Yang Y, Chen Z (2017) Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 23:3043–3052CrossRef Qin CC, Liu YN, Hu Y, Yang Y, Chen Z (2017) Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 23:3043–3052CrossRef
27.
go back to reference Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007:45673CrossRef Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007:45673CrossRef
28.
go back to reference Shi D, Xu Y, Du X, Chen X, Zhang X, Lou J, Li M, Zhuo J (2015) Co-treatment of THP-1 cells with naringenin and curcumin induces cell cycle arrest and apoptosis via numerous pathways. Mol Med Rep 12:8223–8228CrossRef Shi D, Xu Y, Du X, Chen X, Zhang X, Lou J, Li M, Zhuo J (2015) Co-treatment of THP-1 cells with naringenin and curcumin induces cell cycle arrest and apoptosis via numerous pathways. Mol Med Rep 12:8223–8228CrossRef
29.
go back to reference Park JH, Jin CY, Lee BK, Kim GY, Choi YH, Jeong YK (2008) Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol 46:3684–3690CrossRef Park JH, Jin CY, Lee BK, Kim GY, Choi YH, Jeong YK (2008) Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol 46:3684–3690CrossRef
30.
go back to reference Lee BC, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842:446–462CrossRef Lee BC, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842:446–462CrossRef
31.
go back to reference Siedle B, Hrenn A, Merfort I (2007) Natural compounds as inhibitors of human neutrophil elastase. Planta Med 73:401–420CrossRef Siedle B, Hrenn A, Merfort I (2007) Natural compounds as inhibitors of human neutrophil elastase. Planta Med 73:401–420CrossRef
32.
go back to reference Melzig MF, Loser B, Ciesielski S (2001) Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie 56:967–970PubMed Melzig MF, Loser B, Ciesielski S (2001) Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie 56:967–970PubMed
Metadata
Title
Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice
Authors
Rika Tsuhako
Hiroki Yoshida
Chihiro Sugita
Masahiko Kurokawa
Publication date
01-01-2020
Publisher
Springer Singapore
Keywords
Obesity
Obesity
Published in
Journal of Natural Medicines / Issue 1/2020
Print ISSN: 1340-3443
Electronic ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-019-01332-5

Other articles of this Issue 1/2020

Journal of Natural Medicines 1/2020 Go to the issue