Skip to main content
Top
Published in: Obesity Surgery 9/2020

01-09-2020 | Obesity | Original Contributions

Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery

Authors: Naomi Davies, Justin M. O’Sullivan, Lindsay D. Plank, Rinki Murphy

Published in: Obesity Surgery | Issue 9/2020

Login to get access

Abstract

Purpose

Distinct anatomical rearrangements of the gastrointestinal tract achieved by various types of bariatric surgery cause changes in nutrient intake and gut microbiota. The contribution of such gut microbiota changes to remission of type 2 diabetes (T2D) remains unclear.

Aim

We examined gut microbiota changes following banded Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) in a randomised study, in relation to T2D remission.

Materials and Methods

Whole-metagenome shotgun sequencing was carried out on paired stool samples at pre- and 1-year post-surgery collected from 44 participants with T2D randomised to banded Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). Taxonomic composition and predicted functional potential of the gut bacteria were identified using HUMANn2, and annotated using MetaCyc. Five-day dietary records (analysed using FoodWorks v8.0), body weight and diabetes status were recorded at both time points.

Results

RYGB participants had higher percentage excess weight loss than SG (p = 0.01), even though dietary intake was similar at 1-year post-surgery. Similar proportions achieved diabetes remission (HbA1c < 48 mmol/mol without medications) after either RYGB (68%) or SG (59%). RYGB resulted in increased abundances of Firmicutes and Proteobacteria, while SG resulted in increased Bacteroidetes. Pre-surgery, an increased abundance of Eubacteriaceae (p = 0.01) and Alistipes putredinis (p = 0.01) was observed in those who went on to remit from T2D post-surgery. Following surgery, Lachnospiraceae (p = 0.04) and Roseburia (p = 0.01) species were more abundant in those who had achieved T2D remission.

Conclusions

Specific stool bacterial taxa may signal likelihood of T2D remission after bariatric surgery which is potentially mediated by increases in Lachnospiraceae and Roseburia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.PubMedCrossRef Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.PubMedCrossRef
2.
go back to reference Vidal J, Ibarzabal A, Romero F, et al. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg. 2008;18:1077–82.PubMedCrossRef Vidal J, Ibarzabal A, Romero F, et al. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg. 2008;18:1077–82.PubMedCrossRef
3.
go back to reference Lee W-J, Chong K, Ser K-H, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8.PubMedCrossRef Lee W-J, Chong K, Ser K-H, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8.PubMedCrossRef
4.
go back to reference Murphy R, Clarke MG, Evennett NJ, et al. Laparoscopic sleeve gastrectomy versus banded Roux-en-Y gastric bypass for diabetes and obesity: a prospective randomised double-blind trial. Obes Surg. 2018;28(2):293–302.PubMedCrossRef Murphy R, Clarke MG, Evennett NJ, et al. Laparoscopic sleeve gastrectomy versus banded Roux-en-Y gastric bypass for diabetes and obesity: a prospective randomised double-blind trial. Obes Surg. 2018;28(2):293–302.PubMedCrossRef
5.
go back to reference Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.PubMedPubMedCentralCrossRef Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.PubMedPubMedCentralCrossRef
6.
go back to reference Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res. 2017;118(11):1844–55.CrossRef Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circ Res. 2017;118(11):1844–55.CrossRef
8.
go back to reference Davies N, O’Sullivan JM, Plank LD, et al. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: a systematic review. Surg Obes Relat Dis. 2019;15:656–65.PubMedCrossRef Davies N, O’Sullivan JM, Plank LD, et al. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: a systematic review. Surg Obes Relat Dis. 2019;15:656–65.PubMedCrossRef
10.
go back to reference Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiom in obese and lean twins. Nature. 2009;457(32089):480–4.PubMedCrossRef Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiom in obese and lean twins. Nature. 2009;457(32089):480–4.PubMedCrossRef
11.
go back to reference Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720–4.CrossRef Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720–4.CrossRef
12.
go back to reference Wang Y, Luo X, Mao X, et al. Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS One. 2017;12(3):1–15. Wang Y, Luo X, Mao X, et al. Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS One. 2017;12(3):1–15.
13.
go back to reference Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRef Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRef
14.
15.
go back to reference Furet J-P, Kong L-C, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedPubMedCentralCrossRef Furet J-P, Kong L-C, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedPubMedCentralCrossRef
16.
go back to reference Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13(6):514–22.
17.
go back to reference Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.PubMedCrossRef Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.PubMedCrossRef
18.
go back to reference Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.PubMedPubMedCentralCrossRef Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.PubMedPubMedCentralCrossRef
19.
go back to reference Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:1–12. Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:1–12.
20.
go back to reference Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.PubMedPubMedCentralCrossRef Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.PubMedPubMedCentralCrossRef
21.
go back to reference Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.PubMedCrossRef Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.PubMedCrossRef
22.
go back to reference Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss. Psychosom Med. 2017;79(8):880–7.PubMedPubMedCentralCrossRef Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss. Psychosom Med. 2017;79(8):880–7.PubMedPubMedCentralCrossRef
23.
go back to reference Federico A, Dallio M, Tolone S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In Vivo. 2016;30(3):321–30.PubMed Federico A, Dallio M, Tolone S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In Vivo. 2016;30(3):321–30.PubMed
24.
go back to reference Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7(FEB):200.PubMedPubMedCentral Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7(FEB):200.PubMedPubMedCentral
25.
go back to reference Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ. 2017;5(6):3443.CrossRef Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ. 2017;5(6):3443.CrossRef
26.
go back to reference Ilhan ZE, DiBaise JK, Isern NG, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11(9):2047–58.PubMedPubMedCentralCrossRef Ilhan ZE, DiBaise JK, Isern NG, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11(9):2047–58.PubMedPubMedCentralCrossRef
27.
go back to reference Chen H, Qian L, Lv Q, et al. Change in gut microbiota is correlated with alterations in the surface molecule expression of monocytes after Roux-en-Y gastric bypass surgery in obese type 2 diabetic patients. Am J Transl Res. 2017;9(3):1243–54.PubMedPubMedCentral Chen H, Qian L, Lv Q, et al. Change in gut microbiota is correlated with alterations in the surface molecule expression of monocytes after Roux-en-Y gastric bypass surgery in obese type 2 diabetic patients. Am J Transl Res. 2017;9(3):1243–54.PubMedPubMedCentral
28.
go back to reference Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.PubMedCrossRef Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.PubMedCrossRef
29.
go back to reference Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;8(4):351–8. Imhann F, Vich Vila A, Bonder MJ, et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes. 2017;8(4):351–8.
30.
go back to reference Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.CrossRefPubMed Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52–60.CrossRefPubMed
31.
go back to reference De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.PubMedPubMedCentralCrossRef De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.PubMedPubMedCentralCrossRef
32.
go back to reference Heinsen FA, Fangmann D, Müller N, et al. Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes Facts. 2017;9(6):379–91.CrossRef Heinsen FA, Fangmann D, Müller N, et al. Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes Facts. 2017;9(6):379–91.CrossRef
33.
go back to reference Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes , contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes , contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.
34.
go back to reference Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.PubMedPubMedCentralCrossRef Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.PubMedPubMedCentralCrossRef
35.
go back to reference Mardinoglu A, Boren J, Smith U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab. 2016;23(1):10–2.PubMedCrossRef Mardinoglu A, Boren J, Smith U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab. 2016;23(1):10–2.PubMedCrossRef
36.
go back to reference Seto CT, Jeraldo P, Orenstein R, et al. Prolonged use of a proton pump inhibitor reduces microbial diversity: implications for Clostridium difficile susceptibility. Microbiome. 2014;2(1):42.PubMedPubMedCentralCrossRef Seto CT, Jeraldo P, Orenstein R, et al. Prolonged use of a proton pump inhibitor reduces microbial diversity: implications for Clostridium difficile susceptibility. Microbiome. 2014;2(1):42.PubMedPubMedCentralCrossRef
38.
go back to reference Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016;65(5):749–56.PubMedCrossRef Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016;65(5):749–56.PubMedCrossRef
39.
go back to reference Murphy R, Evennett NJ, Clarke MG, et al. Sleeve gastrectomy versus Roux-en-Y gastric bypass for type 2 diabetes and morbid obesity: double-blind randomised clinical trial protocol. BMJ Open. 2016;6(7):e011416.PubMedPubMedCentralCrossRef Murphy R, Evennett NJ, Clarke MG, et al. Sleeve gastrectomy versus Roux-en-Y gastric bypass for type 2 diabetes and morbid obesity: double-blind randomised clinical trial protocol. BMJ Open. 2016;6(7):e011416.PubMedPubMedCentralCrossRef
40.
go back to reference Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46(D1):D633–9. Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46(D1):D633–9.
41.
go back to reference Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4.PubMedPubMedCentralCrossRef Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4.PubMedPubMedCentralCrossRef
42.
go back to reference Luijten JCHBM, Vugts G, Nieuwenhuijzen GAP, et al. The importance of the microbiome in bariatric surgery : a systematic review. Obes Surg. 2019;29:2338–49.PubMedCrossRef Luijten JCHBM, Vugts G, Nieuwenhuijzen GAP, et al. The importance of the microbiome in bariatric surgery : a systematic review. Obes Surg. 2019;29:2338–49.PubMedCrossRef
43.
go back to reference Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans: an overview using omics data. msystems. 2017;2(6):1–18.CrossRef Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities in humans: an overview using omics data. msystems. 2017;2(6):1–18.CrossRef
45.
go back to reference Remely M, Hippe B, Zanner J, et al. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocr Metab Immune Disord Drug Targets. 2016;16:99–106.PubMedCrossRef Remely M, Hippe B, Zanner J, et al. Gut microbiota of obese, type 2 diabetic individuals is enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after weight loss. Endocr Metab Immune Disord Drug Targets. 2016;16:99–106.PubMedCrossRef
46.
go back to reference Saulnier DM, Riehle K, Mistretta T, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782–91.PubMedCrossRef Saulnier DM, Riehle K, Mistretta T, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1782–91.PubMedCrossRef
47.
go back to reference Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2019;0(0):1–20. Jackson DN, Theiss AL. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2019;0(0):1–20.
48.
go back to reference Arrieta M, Finlay BB, Rawls J, et al. The commensal microbiota drives immune homeostasis. Front Immunol. 2012;3(March):1–6. Arrieta M, Finlay BB, Rawls J, et al. The commensal microbiota drives immune homeostasis. Front Immunol. 2012;3(March):1–6.
49.
go back to reference Lewis DA, Brown R, Williams J, et al. The human urinary microbiome ; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol. 2013;3(August):1–14. Lewis DA, Brown R, Williams J, et al. The human urinary microbiome ; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol. 2013;3(August):1–14.
50.
go back to reference Papa E, Docktor M, Smillie C, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7(6):e39242.PubMedPubMedCentralCrossRef Papa E, Docktor M, Smillie C, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7(6):e39242.PubMedPubMedCentralCrossRef
51.
go back to reference De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):1–18.CrossRef De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):1–18.CrossRef
54.
go back to reference Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.PubMedCrossRef Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.PubMedCrossRef
56.
go back to reference Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.PubMedPubMedCentralCrossRef Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.PubMedPubMedCentralCrossRef
57.
go back to reference Dahiya DK, Renuka, Dangi AK, Shandilya UM, Puniya AK, Shukla P. Microbiome and metabolome in diagnosis, therapy and other strategic applications. 2019. 417–424 p. Dahiya DK, Renuka, Dangi AK, Shandilya UM, Puniya AK, Shukla P. Microbiome and metabolome in diagnosis, therapy and other strategic applications. 2019. 417–424 p.
58.
go back to reference Million M, Tomas J, Wagner C, et al. New insights in gut microbiota and mucosal immunity of the small intestine. Hum Microbiome J. 2018;7–8(January):23–32.CrossRef Million M, Tomas J, Wagner C, et al. New insights in gut microbiota and mucosal immunity of the small intestine. Hum Microbiome J. 2018;7–8(January):23–32.CrossRef
59.
go back to reference Mchardy IH, Goudarzi M, Tong M, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013;1(17):1–19. Mchardy IH, Goudarzi M, Tong M, et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013;1(17):1–19.
60.
go back to reference Sberro H, Fremin BJ, Zlitni S, et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell. 2019;178(5):1245–1259.e14.PubMedPubMedCentralCrossRef Sberro H, Fremin BJ, Zlitni S, et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell. 2019;178(5):1245–1259.e14.PubMedPubMedCentralCrossRef
Metadata
Title
Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery
Authors
Naomi Davies
Justin M. O’Sullivan
Lindsay D. Plank
Rinki Murphy
Publication date
01-09-2020
Publisher
Springer US
Published in
Obesity Surgery / Issue 9/2020
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-020-04684-0

Other articles of this Issue 9/2020

Obesity Surgery 9/2020 Go to the issue