Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2020

01-12-2020 | Obesity | Research article

Gestational weight gain and body composition of full-term newborns and infants: a cohort study

Authors: Sylvia R. Nehab, Letícia D. Villela, Fernanda V. M. Soares, Andrea D. Abranches, Daniele M. R. Araújo, Leila M. L. da Silva, Yasmin N. V. Amaral, Saint Clair G. Junior, Maria Dalva B. B. Meio, Maria Elisabeth Moreira

Published in: BMC Pregnancy and Childbirth | Issue 1/2020

Login to get access

Abstract

Background

The association between gestational weight gain and neonatal body composition has been inconsistent, exposing the need for further research. The aim of this study was to evaluate whether gestational weight gain influences the body composition of full-term newborns and infants up to 4 months old.

Methods

A cohort study was performed with 124 participants divided into categories of gestational weight gain according to the 2009 Institute of Medicine guidelines. The anthropometric and body composition data of newborns and infants acquired using air displacement plethysmography (PeaPod®) were collected at 96 h, 1 month, 2 months and 4 months of life. In the statistical analysis, the chi-square test was used to analyze categorical variables, and ANOVA was used to analyze numerical variables. Univariate analysis was performed, and the absolute and relative frequencies of the categorical variables, as well as mean and standard deviation of the numerical variables, were obtained. Bivariate analysis was performed for the categories of gestational weight gain and gestational and neonatal characteristics. When adjustments to gestational hypertension, gestational diabetes, and pregestational body mass index (BMI) were analyzed by linear regression, gestational weight gain remained a significant variable for newborn percent fat mass. For all analyses, a significance level of 5% was adopted.

Results

Gestational weight gain was adequate in 33.8% of the participants, excessive in 41.1% and insufficient in 25%. Women with excessive weight gain had higher pregestational BMIs and a higher incidence of gestational hypertension. Their newborns had a higher body mass, body fat mass in grams and percent fat mass than the infants born to mothers with adequate or insufficient gestational weight gain. No significant differences were observed in body composition at 1, 2 and 4 months of life during infant follow-up.

Conclusion

Excessive gestational weight gain may alter the body composition of newborns at birth. Further studies are required to better evaluate infant follow-up.

Trial registration

Clinical Trial Registry: NCT00875251 on April 3, 2009.
Literature
2.
go back to reference Silva APD, Feilbelmann TCM, Silva DC, et al. Prevalence of overweight and obesity and associated factors in school children and adolescents in a medium-sized Brazilian city. Clinics (Sao Paulo). 2018;73:e438. Silva APD, Feilbelmann TCM, Silva DC, et al. Prevalence of overweight and obesity and associated factors in school children and adolescents in a medium-sized Brazilian city. Clinics (Sao Paulo). 2018;73:e438.
3.
go back to reference Oken E. Maternal and child obesity: the causal link. Obstet Gynecol Clin N Am. 2009;36(2):361–77.CrossRef Oken E. Maternal and child obesity: the causal link. Obstet Gynecol Clin N Am. 2009;36(2):361–77.CrossRef
4.
go back to reference Cunha AJ, Leite ÁJ, Almeida IS. The pediatrician's role in the first thousand days of the child: the pursuit of healthy nutrition and development. J Pediatr. 2015;91(6 Suppl 1):S44–51.CrossRef Cunha AJ, Leite ÁJ, Almeida IS. The pediatrician's role in the first thousand days of the child: the pursuit of healthy nutrition and development. J Pediatr. 2015;91(6 Suppl 1):S44–51.CrossRef
5.
go back to reference Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, et al. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the healthy start study. Am J Clin Nutr. 2015;101(2):302–9.PubMedCrossRef Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, et al. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the healthy start study. Am J Clin Nutr. 2015;101(2):302–9.PubMedCrossRef
7.
go back to reference Goldstein RF, Abell SK, Ranasinha S, Misso M, Boyle JA, Black MH, et al. Association of Gestational Weight Gain with Maternal and Infant Outcomes. Jama. 2017;317(21):2207–25.PubMedPubMedCentralCrossRef Goldstein RF, Abell SK, Ranasinha S, Misso M, Boyle JA, Black MH, et al. Association of Gestational Weight Gain with Maternal and Infant Outcomes. Jama. 2017;317(21):2207–25.PubMedPubMedCentralCrossRef
8.
go back to reference Crozier SR, Inskip HM, Godfrey KM, Cooper C, Harvey NC, Cole A. Weight gain in pregnancy and childhood body composition : findings from the Southampton Women ' s Survey 1–3. Am J Clin Nutr. 2010;91(6):1745–51.PubMedPubMedCentralCrossRef Crozier SR, Inskip HM, Godfrey KM, Cooper C, Harvey NC, Cole A. Weight gain in pregnancy and childhood body composition : findings from the Southampton Women ' s Survey 1–3. Am J Clin Nutr. 2010;91(6):1745–51.PubMedPubMedCentralCrossRef
9.
go back to reference Raiten DJ, Steiber AL, Carlson SE, Griffin I, Anderson D, Hay WW Jr. Working group reports : evaluation of the evidence to support practice guidelines for nutritional care of preterm infants — the pre-B project 1. Am J Clin Nutr. 2016;103:648–78..CrossRef Raiten DJ, Steiber AL, Carlson SE, Griffin I, Anderson D, Hay WW Jr. Working group reports : evaluation of the evidence to support practice guidelines for nutritional care of preterm infants — the pre-B project 1. Am J Clin Nutr. 2016;103:648–78..CrossRef
12.
go back to reference Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol. 2013;42(5):1215–22.PubMedCrossRef Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int J Epidemiol. 2013;42(5):1215–22.PubMedCrossRef
13.
go back to reference Papageorghiou AT, Kennedy SH, Salomon LJ, Ohuma EO, Cheikh Ismail L, Barros FC, Lambert A, Carvalho M, Jaffer YA, Bertino E, Gravett MG, Altman DG, Purwar M, Noble JA, Pang R, Victora CG, Bhutta ZA, Villar J. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Ultrasound Obstet Gynecol. 2014;44(6):641–8.PubMedPubMedCentralCrossRef Papageorghiou AT, Kennedy SH, Salomon LJ, Ohuma EO, Cheikh Ismail L, Barros FC, Lambert A, Carvalho M, Jaffer YA, Bertino E, Gravett MG, Altman DG, Purwar M, Noble JA, Pang R, Victora CG, Bhutta ZA, Villar J. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown-rump length in the first trimester of pregnancy. Ultrasound Obstet Gynecol. 2014;44(6):641–8.PubMedPubMedCentralCrossRef
14.
go back to reference Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–5.PubMedCrossRef Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–5.PubMedCrossRef
15.
go back to reference Urlando A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003;53(3):486–92.PubMedCrossRef Urlando A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003;53(3):486–92.PubMedCrossRef
16.
go back to reference Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21 st project. Lancet. 2014;384:857–68.PubMedCrossRef Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the newborn cross-sectional study of the INTERGROWTH-21 st project. Lancet. 2014;384:857–68.PubMedCrossRef
17.
go back to reference American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122(5):1122–31.CrossRef American College of Obstetricians and Gynecologists; Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstet Gynecol. 2013;122(5):1122–31.CrossRef
18.
go back to reference Magee LA, von Dadelszen P. State-of-the-Art diagnosis and treatment of hypertension in pregnancy. Mayo Clin Proc. 2018;93(11):1664-77. Magee LA, von Dadelszen P. State-of-the-Art diagnosis and treatment of hypertension in pregnancy. Mayo Clin Proc. 2018;93(11):1664-77.
19.
go back to reference American Diabetes Association. 13. Management of diabetes in pregnancy: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S137–43.CrossRef American Diabetes Association. 13. Management of diabetes in pregnancy: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S137–43.CrossRef
21.
go back to reference Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189(6):1698–704.PubMedCrossRef Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189(6):1698–704.PubMedCrossRef
22.
go back to reference Hull HR, Thornton JC, Ji Y, Paley C, Rosenn B, Mathews P, et al. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205(3):1–7.CrossRef Hull HR, Thornton JC, Ji Y, Paley C, Rosenn B, Mathews P, et al. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205(3):1–7.CrossRef
23.
go back to reference McDermott MM, Brubaker L. Prepregnancy body mass index, weight gain during pregnancy, and health outcomes. JAMA. 2019;321(17):1715.PubMedCrossRef McDermott MM, Brubaker L. Prepregnancy body mass index, weight gain during pregnancy, and health outcomes. JAMA. 2019;321(17):1715.PubMedCrossRef
24.
go back to reference Poston L. Developmental programming and diabetes - the human experience and insight from animal models. Best Pract Res Clin Endocrinol Metab. 2010;24(4):541–52.PubMedCrossRef Poston L. Developmental programming and diabetes - the human experience and insight from animal models. Best Pract Res Clin Endocrinol Metab. 2010;24(4):541–52.PubMedCrossRef
25.
go back to reference Ruchat SM, Allard C, Doyon M, Lacroix M, Guillemette L, Patenaude J, et al. Timing of excessive weight gain during pregnancy modulates newborn anthropometry. J Obstet Gynaecol Canada. 2016;38(2):108–17.CrossRef Ruchat SM, Allard C, Doyon M, Lacroix M, Guillemette L, Patenaude J, et al. Timing of excessive weight gain during pregnancy modulates newborn anthropometry. J Obstet Gynaecol Canada. 2016;38(2):108–17.CrossRef
26.
go back to reference Josefson JL, Hoffmann JA, Metzger BE. Excessive weight gain in women with a normal pre-pregnancy BMI is associated with increased neonatal adiposity. Pediatr Obes. 2013;8(2):33–6.CrossRef Josefson JL, Hoffmann JA, Metzger BE. Excessive weight gain in women with a normal pre-pregnancy BMI is associated with increased neonatal adiposity. Pediatr Obes. 2013;8(2):33–6.CrossRef
27.
go back to reference Waters TP, Huston-Presley L, Catalano PM. Neonatal body composition according to the revised Institute of Medicine recommendations for maternal weight gain. J Clin Endocrinol Metab. 2012;97(10):3648–54.PubMedPubMedCentralCrossRef Waters TP, Huston-Presley L, Catalano PM. Neonatal body composition according to the revised Institute of Medicine recommendations for maternal weight gain. J Clin Endocrinol Metab. 2012;97(10):3648–54.PubMedPubMedCentralCrossRef
28.
go back to reference Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery H. Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: a large cross-sectional study. Early Hum Dev. 2013;89(10):839–43.PubMedCrossRef Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery H. Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: a large cross-sectional study. Early Hum Dev. 2013;89(10):839–43.PubMedCrossRef
29.
go back to reference Gaillard R, Felix JF, Duijts L, Jaddoe VWV. Childhood consequences of maternal obesity and excessive weight gain during pregnancy. Acta Obstet Gynecol Scand. 2014;93(11):1085–9.PubMedCrossRef Gaillard R, Felix JF, Duijts L, Jaddoe VWV. Childhood consequences of maternal obesity and excessive weight gain during pregnancy. Acta Obstet Gynecol Scand. 2014;93(11):1085–9.PubMedCrossRef
Metadata
Title
Gestational weight gain and body composition of full-term newborns and infants: a cohort study
Authors
Sylvia R. Nehab
Letícia D. Villela
Fernanda V. M. Soares
Andrea D. Abranches
Daniele M. R. Araújo
Leila M. L. da Silva
Yasmin N. V. Amaral
Saint Clair G. Junior
Maria Dalva B. B. Meio
Maria Elisabeth Moreira
Publication date
01-12-2020
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
BMC Pregnancy and Childbirth / Issue 1/2020
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-020-03145-x

Other articles of this Issue 1/2020

BMC Pregnancy and Childbirth 1/2020 Go to the issue