Skip to main content
Top
Published in: Obesity Surgery 5/2020

01-05-2020 | Obesity | Original Contributions

Gastric Bypass Improves Obesity and Glucose Tolerance Independent of Gastric Pouch Size

Authors: Rui Xu, Chenyu Zhu, Joseph F. Pierre, Deng Ping Yin

Published in: Obesity Surgery | Issue 5/2020

Login to get access

Abstract

Purpose

We investigated whether metabolic phenotype improvements following gastric bypass are associated with gastric resection strategy in high-fat diet-induced obese (DIO) mice.

Materials and Methods

We developed the mouse Roux-en-Y gastric bypass (RYGB) model with different gastric pouch sizes: (i) RYGB with a large gastric pouch (RYGB-LP), where the stomach was transected, and the jejunum was anastomosed to the residual forestomach, in which 30% of the stomach is retained. (ii) RYGB with a small remnant gastric pouch (RYGB-SP), where the stomach was transected 0.8 cm distal to the esophagogastric junction, and the jejunum is attached to a small remnant of the forestomach (~ 10% of the stomach). (iii) RYGB without gastric pouch (RYGB-NP), where the jejunum is anastomosed to the lower portion of the esophagus.

Results

Surgical success rate (or 4-week mouse survival rate) of the RYGB-LP, RYGB-SP, and RYGB-NP procedures was 50, 75, and 85%, respectively. Our data demonstrate that all RYGB procedures improved body weight, glucose tolerance, and liver steatosis, compared with untreated DIO mice at 8-week post-surgery. Major surgical complication, such as obstruction at the forestomach, occurred predominantly in RYGB-LP mice, resulting in a higher mortality. Pre- and post-prandial plasma ghrelin levels did not correlate with improved metabolic phenotype after gastric bypass.

Conclusions

We conclude that RYGB with different gastric pouch equally improves obesity and glucose tolerance independent of gastric pouch size and total plasma ghrelin levels in the mouse model of RYGB surgery.
Literature
1.
go back to reference Ferrannini E, Camastra S, Gastaldelli A, et al. Beta-cell function in obesity: effects of weight loss. Diabetes. 2004;53(Suppl 3):S26–33.CrossRef Ferrannini E, Camastra S, Gastaldelli A, et al. Beta-cell function in obesity: effects of weight loss. Diabetes. 2004;53(Suppl 3):S26–33.CrossRef
2.
go back to reference Heneghan HM, Yimcharoen P, Brethauer SA, et al. Influence of pouch and stoma size on weight loss after gastric bypass. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2012;8:408–15.CrossRef Heneghan HM, Yimcharoen P, Brethauer SA, et al. Influence of pouch and stoma size on weight loss after gastric bypass. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2012;8:408–15.CrossRef
3.
go back to reference Topart P, Becouarn G, Ritz P. Pouch size after gastric bypass does not correlate with weight loss outcome. Obes Surg. 2011;21:1350–4.CrossRef Topart P, Becouarn G, Ritz P. Pouch size after gastric bypass does not correlate with weight loss outcome. Obes Surg. 2011;21:1350–4.CrossRef
4.
go back to reference O’Connor EA, Carlin AM. Lack of correlation between variation in small-volume gastric pouch size and weight loss after laparoscopic Roux-en-Y gastric bypass. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2008;4:399–403.CrossRef O’Connor EA, Carlin AM. Lack of correlation between variation in small-volume gastric pouch size and weight loss after laparoscopic Roux-en-Y gastric bypass. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2008;4:399–403.CrossRef
5.
go back to reference Nishie A, Brown B, Barloon T, et al. Comparison of size of proximal gastric pouch and short-term weight loss following routine upper gastrointestinal contrast study after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2007;17:1183–8.CrossRef Nishie A, Brown B, Barloon T, et al. Comparison of size of proximal gastric pouch and short-term weight loss following routine upper gastrointestinal contrast study after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2007;17:1183–8.CrossRef
6.
go back to reference Saber AA, Elgamal MH, McLeod MK. Bariatric surgery: the past, present, and future. Obes Surg. 2008;18:121–8.CrossRef Saber AA, Elgamal MH, McLeod MK. Bariatric surgery: the past, present, and future. Obes Surg. 2008;18:121–8.CrossRef
7.
go back to reference Yin DP, Gao Q, Ma LL, et al. Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice. Ann Surg. 2011;254:73–82.CrossRef Yin DP, Gao Q, Ma LL, et al. Assessment of different bariatric surgeries in the treatment of obesity and insulin resistance in mice. Ann Surg. 2011;254:73–82.CrossRef
8.
go back to reference Howard DD, Caban AM, Cendan JC, et al. Gastroesophageal reflux after sleeve gastrectomy in morbidly obese patients. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2011;7:709–13.CrossRef Howard DD, Caban AM, Cendan JC, et al. Gastroesophageal reflux after sleeve gastrectomy in morbidly obese patients. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2011;7:709–13.CrossRef
9.
go back to reference Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.CrossRef Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.CrossRef
10.
go back to reference de Freitas AC, Campos AC, Coelho JC. The impact of bariatric surgery on nonalcoholic fatty liver disease. Current opinion in clinical nutrition and metabolic care. 2008;11:267–74.CrossRef de Freitas AC, Campos AC, Coelho JC. The impact of bariatric surgery on nonalcoholic fatty liver disease. Current opinion in clinical nutrition and metabolic care. 2008;11:267–74.CrossRef
11.
go back to reference Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19:357–62.CrossRef Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19:357–62.CrossRef
12.
go back to reference Beard JH, Bell RL, Duffy AJ. Reproductive considerations and pregnancy after bariatric surgery: current evidence and recommendations. Obes Surg. 2008;18:1023–7.CrossRef Beard JH, Bell RL, Duffy AJ. Reproductive considerations and pregnancy after bariatric surgery: current evidence and recommendations. Obes Surg. 2008;18:1023–7.CrossRef
13.
go back to reference Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013;144:50–2. e55CrossRef Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013;144:50–2. e55CrossRef
14.
go back to reference Hatoum IJ, Stylopoulos N, Vanhoose AM, et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab. 2012;97:E1023–31.CrossRef Hatoum IJ, Stylopoulos N, Vanhoose AM, et al. Melanocortin-4 receptor signaling is required for weight loss after gastric bypass surgery. J Clin Endocrinol Metab. 2012;97:E1023–31.CrossRef
15.
go back to reference Andrikopoulos S, Blair AR, Deluca N, et al. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295:E1323–32.CrossRef Andrikopoulos S, Blair AR, Deluca N, et al. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295:E1323–32.CrossRef
16.
go back to reference Stengel A, Goebel M, Wang L, et al. Differential distribution of ghrelin-O-acyltransferase (GOAT) immunoreactive cells in the mouse and rat gastric oxyntic mucosa. Biochem Biophys Res Commun. 2010;392:67–71.CrossRef Stengel A, Goebel M, Wang L, et al. Differential distribution of ghrelin-O-acyltransferase (GOAT) immunoreactive cells in the mouse and rat gastric oxyntic mucosa. Biochem Biophys Res Commun. 2010;392:67–71.CrossRef
17.
go back to reference Yimcharoen P, Heneghan HM, Tariq N, et al. Endoscopic stent management of leaks and anastomotic strictures after foregut surgery. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2011;7:628–36.CrossRef Yimcharoen P, Heneghan HM, Tariq N, et al. Endoscopic stent management of leaks and anastomotic strictures after foregut surgery. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. 2011;7:628–36.CrossRef
18.
go back to reference Seyfried F, Lannoo M, Gsell W, et al. Roux-en-Y gastric bypass in mice--surgical technique and characterisation. Obes Surg. 2012;22:1117–25.CrossRef Seyfried F, Lannoo M, Gsell W, et al. Roux-en-Y gastric bypass in mice--surgical technique and characterisation. Obes Surg. 2012;22:1117–25.CrossRef
19.
go back to reference Hao Z, Zhao Z, Berthoud HR, et al. Development and verification of a mouse model for Roux-en-Y gastric bypass surgery with a small gastric pouch. PLoS One. 2013;8:e52922.CrossRef Hao Z, Zhao Z, Berthoud HR, et al. Development and verification of a mouse model for Roux-en-Y gastric bypass surgery with a small gastric pouch. PLoS One. 2013;8:e52922.CrossRef
20.
go back to reference Frohman HA, Rychahou PG, Li J, et al. Development of murine bariatric surgery models: lessons learned. J Surg Res. 2018;229:302–10.CrossRef Frohman HA, Rychahou PG, Li J, et al. Development of murine bariatric surgery models: lessons learned. J Surg Res. 2018;229:302–10.CrossRef
21.
go back to reference Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin N Am. 2009;56:1105–21.CrossRef Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin N Am. 2009;56:1105–21.CrossRef
22.
go back to reference Xanthakos SA, Inge TH. Nutritional consequences of bariatric surgery. Curr Opin Clin Nutr Metab Care. 2006;9:489–96.CrossRef Xanthakos SA, Inge TH. Nutritional consequences of bariatric surgery. Curr Opin Clin Nutr Metab Care. 2006;9:489–96.CrossRef
23.
go back to reference von Drygalski A, Andris DA. Anemia after bariatric surgery: more than just iron deficiency. Nutr Clin Pract. 2009;24:217–26.CrossRef von Drygalski A, Andris DA. Anemia after bariatric surgery: more than just iron deficiency. Nutr Clin Pract. 2009;24:217–26.CrossRef
24.
go back to reference Malin SK, Samat A, Wolski K, et al. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes. 2013; Malin SK, Samat A, Wolski K, et al. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes. 2013;
Metadata
Title
Gastric Bypass Improves Obesity and Glucose Tolerance Independent of Gastric Pouch Size
Authors
Rui Xu
Chenyu Zhu
Joseph F. Pierre
Deng Ping Yin
Publication date
01-05-2020
Publisher
Springer US
Published in
Obesity Surgery / Issue 5/2020
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-020-04403-9

Other articles of this Issue 5/2020

Obesity Surgery 5/2020 Go to the issue