Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Obesity | Research article

Association of physical activity with adiposity in preschoolers using different clinical adiposity measures: a cross-sectional study

Authors: Amar Arhab, Nadine Messerli-Bürgy, Tanja H. Kakebeeke, Kerstin Stülb, Annina Zysset, Claudia S. Leeger-Aschmann, Einat A. Schmutz, Andrea H. Meyer, Simone Munsch, Susi Kriemler, Oskar G. Jenni, Jardena J. Puder

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

More research is needed about the association between physical activity (PA), sedentary behaviour (SB), and adiposity in preschoolers, particularly using more direct clinical measures of adiposity. Therefore, the main objective of this study was to investigate the association between objectively measured PA and different clinical adiposity measures in a large sample of preschoolers.

Methods

Four hundred sixty-three predominantly normal-weight (77%) 2–6-year-old preschool children participated in the Swiss Preschoolers’ Health Study (SPLASHY). Physical activity was measured using accelerometers and was analyzed using 15-s (uni-axial) epoch length using validated cut-offs. Adiposity measures included body mass index (BMI), the sum of four skinfolds, and waist circumference (WC). Multilevel linear regression modeling, adjusted for age, sex and wear time, was used to assess the association between PA and SB with BMI, WC, and skinfold thickness.

Results

Total PA and different PA intensities were positively and SB was inversely associated with BMI in the total sample and in the normal-weight children (p < 0.05). Total PA was inversely associated with skinfold thickness in overweight and obese children (p < 0.05), while there was only a weak association for vigorous PA (p > 0.05). Moderate and moderate-to-vigorous PA were positively, and SB was negatively associated with WC in the total sample and in the normal-weight children (p < 0.05). Additional adjustment for potential sociocultural and biological confounding variables attenuated some of the results.

Conclusions

In this very young and predominantly normal-weight population, PA is positively related to BMI and WC, but this relationship is not observed in overweight and obese children. In this latter population, PA is inversely, and SB is positively related to skinfold thickness. Skinfold thickness could represent a useful and simple clinical measure of body fat in preschoolers. The role of vigorous PA in the prevention of early childhood obesity should be further investigated in future studies.

Trial registration

ISRCTN ISRCTN41045021. Retrospectively registered 06 May 2014.
Literature
2.
go back to reference Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes. 2010;5:3–18.CrossRef Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes. 2010;5:3–18.CrossRef
3.
go back to reference LeMura LM, Maziekas MT. Factors that alter body fat, body mass, and fat-free mass in pediatric obesity. Med Sci Sports Exerc. 2002;34:487–96.CrossRef LeMura LM, Maziekas MT. Factors that alter body fat, body mass, and fat-free mass in pediatric obesity. Med Sci Sports Exerc. 2002;34:487–96.CrossRef
4.
go back to reference Remmers T, Sleddens EF, Gubbels JS, de Vries SI, Mommers M, Penders J, et al. Relationship between physical activity and the development of body mass index in children. Med Sci Sports Exerc. 2014;46:177–84.CrossRef Remmers T, Sleddens EF, Gubbels JS, de Vries SI, Mommers M, Penders J, et al. Relationship between physical activity and the development of body mass index in children. Med Sci Sports Exerc. 2014;46:177–84.CrossRef
5.
go back to reference Sijtsma A, Sauer PJ, Stolk RP, Corpeleijn E. Is directly measured physical activity related to adiposity in preschool children? Int J Pediatr Obes. 2011;6:389–400.CrossRef Sijtsma A, Sauer PJ, Stolk RP, Corpeleijn E. Is directly measured physical activity related to adiposity in preschool children? Int J Pediatr Obes. 2011;6:389–400.CrossRef
6.
go back to reference Collings PJ, Brage S, Ridgway CL, Harvey NC, Godfrey KM, Inskip HM, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. Am J Clin Nutr. 2013;97:1020–8.CrossRef Collings PJ, Brage S, Ridgway CL, Harvey NC, Godfrey KM, Inskip HM, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. Am J Clin Nutr. 2013;97:1020–8.CrossRef
7.
go back to reference Espana-Romero V, Mitchell JA, O’Neil JP, Pate R. Objectively measured sedentary time, physical activity and markers of body fat in preschool children. Pediatr Exerc Sc. 2013;25:154–63.CrossRef Espana-Romero V, Mitchell JA, O’Neil JP, Pate R. Objectively measured sedentary time, physical activity and markers of body fat in preschool children. Pediatr Exerc Sc. 2013;25:154–63.CrossRef
8.
go back to reference Janz KF, Levy SM, Burns TL, Torner JC, Willing MD, Warren DDS. Fatness, physical activity, and television viewing in children during the adiposity rebound period: the Iowa bone development study. Prev Med. 2002;35:563–71.CrossRef Janz KF, Levy SM, Burns TL, Torner JC, Willing MD, Warren DDS. Fatness, physical activity, and television viewing in children during the adiposity rebound period: the Iowa bone development study. Prev Med. 2002;35:563–71.CrossRef
9.
go back to reference Finn K, Johannsen N, Specker B. Factors associated with physical activity in preschool children. J Pediatr. 2002;140:81–5.CrossRef Finn K, Johannsen N, Specker B. Factors associated with physical activity in preschool children. J Pediatr. 2002;140:81–5.CrossRef
10.
go back to reference Firrincieli V, Keller A, Ehrensberger R, Platts-Mills J, Shufflebarger C, Geldmaker B, et al. Decreased physical activity among head start children with a history of wheezing: use of an accelerometer to measure activity. Pediatr Pulmonol. 2005;40:57–63.CrossRef Firrincieli V, Keller A, Ehrensberger R, Platts-Mills J, Shufflebarger C, Geldmaker B, et al. Decreased physical activity among head start children with a history of wheezing: use of an accelerometer to measure activity. Pediatr Pulmonol. 2005;40:57–63.CrossRef
11.
go back to reference Jago R, Baranowski T, Baranowski JC, Thompson D, Greaves KA. BMI from 3–6 y of age is predicted by TV viewing and physical activity, not diet. Int J Obes (Lond). 2005;29:557–64.CrossRef Jago R, Baranowski T, Baranowski JC, Thompson D, Greaves KA. BMI from 3–6 y of age is predicted by TV viewing and physical activity, not diet. Int J Obes (Lond). 2005;29:557–64.CrossRef
12.
go back to reference Jones RA, Okely AD, Gregory P, Cliff DP. Relationships between weight status and child, parent and community characteristics in preschool children. Int J Pediatr Obes. 2009;4:54–60.CrossRef Jones RA, Okely AD, Gregory P, Cliff DP. Relationships between weight status and child, parent and community characteristics in preschool children. Int J Pediatr Obes. 2009;4:54–60.CrossRef
13.
go back to reference Kelly LA, Reilly JJ, Fisher A, Montgomery C, Williamson A, McColl JH, et al. Effect of socioeconomic status on objectively measured physical activity. Arch Dis Child. 2006;91:35–8.CrossRef Kelly LA, Reilly JJ, Fisher A, Montgomery C, Williamson A, McColl JH, et al. Effect of socioeconomic status on objectively measured physical activity. Arch Dis Child. 2006;91:35–8.CrossRef
14.
go back to reference Toschke JA, von Kries R, Rosenfeld E, Toschke AM. Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. Clin Nutr. 2007;26:416–20.CrossRef Toschke JA, von Kries R, Rosenfeld E, Toschke AM. Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. Clin Nutr. 2007;26:416–20.CrossRef
15.
go back to reference Heelan KA, Eisenmann JC. Physical activity, media time, and body composition in young children. J Phys Act Health. 2006;2:200–9.CrossRef Heelan KA, Eisenmann JC. Physical activity, media time, and body composition in young children. J Phys Act Health. 2006;2:200–9.CrossRef
16.
go back to reference Al-Hazzaa HM, Al-Rasheedi AA. Adiposity and physical activity levels among preschool children in Jeddah, Saudi Arabia. Saudi Med J. 2007;28:766–73.PubMed Al-Hazzaa HM, Al-Rasheedi AA. Adiposity and physical activity levels among preschool children in Jeddah, Saudi Arabia. Saudi Med J. 2007;28:766–73.PubMed
17.
go back to reference Leppanen MH, Nystrom CD, Henriksson P, Pomeroy J, Ruiz JR, Ortega FB, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. Int J Obes. 2016;40:1126–33.CrossRef Leppanen MH, Nystrom CD, Henriksson P, Pomeroy J, Ruiz JR, Ortega FB, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. Int J Obes. 2016;40:1126–33.CrossRef
18.
go back to reference Metallinos-Katsaras ES, Freedson PS, Fulton JE, Sherry B. The association between an objective measure of physical activity and weight status in preschooler. Obesity. 2007;15:686–94.CrossRef Metallinos-Katsaras ES, Freedson PS, Fulton JE, Sherry B. The association between an objective measure of physical activity and weight status in preschooler. Obesity. 2007;15:686–94.CrossRef
19.
go back to reference Trost SG, Sirard JR, Dowda M, Pfeiffer KA, Pate RR. Physical activity in overweight and nonoverweight preschool children. Int J Obes Relat Metab Disord. 2003;27:834–9.CrossRef Trost SG, Sirard JR, Dowda M, Pfeiffer KA, Pate RR. Physical activity in overweight and nonoverweight preschool children. Int J Obes Relat Metab Disord. 2003;27:834–9.CrossRef
20.
go back to reference Vale SM, Santos RM, da Cruz Soares-Miranda LM, Moreira CM, Ruiz JR, Mota JA. Objectively measured physical activity and body mass index in preschool children. Int J Pediatr. 2010;2010. Vale SM, Santos RM, da Cruz Soares-Miranda LM, Moreira CM, Ruiz JR, Mota JA. Objectively measured physical activity and body mass index in preschool children. Int J Pediatr. 2010;2010.
21.
go back to reference Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively measured physical activity in a representative sample of 3- to 4-year-old children. Obes Res. 2003;11:420–5.CrossRef Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively measured physical activity in a representative sample of 3- to 4-year-old children. Obes Res. 2003;11:420–5.CrossRef
22.
go back to reference Pate RR, McIver K, Dowda M, Brown WH, Addy C. Directly observed physical activity levels in preschool children. J Sch Health. 2008;78:438–44.CrossRef Pate RR, McIver K, Dowda M, Brown WH, Addy C. Directly observed physical activity levels in preschool children. J Sch Health. 2008;78:438–44.CrossRef
23.
go back to reference Martinez-Gomez D, Eisenmann JC, Tucker J, Heelan KA, Welk GJ. Associations between moderate-to-vigorous physical activity and central body fat in 3-8-year-old children. Int J Pediatr Obes. 2011;6:E611–E4.CrossRef Martinez-Gomez D, Eisenmann JC, Tucker J, Heelan KA, Welk GJ. Associations between moderate-to-vigorous physical activity and central body fat in 3-8-year-old children. Int J Pediatr Obes. 2011;6:E611–E4.CrossRef
24.
go back to reference Metcalf BS, Voss LD, Hosking J, Jeffery AN, Wilkin TJ. Physical activity at the government-recommended level and obesity-related health outcomes: a longitudinal study (early bird 37). Arch Dis Child. 2008;93:772–7.CrossRef Metcalf BS, Voss LD, Hosking J, Jeffery AN, Wilkin TJ. Physical activity at the government-recommended level and obesity-related health outcomes: a longitudinal study (early bird 37). Arch Dis Child. 2008;93:772–7.CrossRef
25.
go back to reference Moore LL, Gao D, Bradlee ML, Cupples LA, Sundarajan-Ramamurti A, Proctor MH, et al. Does early physical activity predict body fat change throughout childhood? Prev Med. 2003;37:10–7.CrossRef Moore LL, Gao D, Bradlee ML, Cupples LA, Sundarajan-Ramamurti A, Proctor MH, et al. Does early physical activity predict body fat change throughout childhood? Prev Med. 2003;37:10–7.CrossRef
26.
go back to reference Janz KF, Burns TL, Levy SM. Tracking of activity and sedentary behaviors in childhood: the Iowa bone development study. Am J Prev Med. 2005;29:171–8.CrossRef Janz KF, Burns TL, Levy SM. Tracking of activity and sedentary behaviors in childhood: the Iowa bone development study. Am J Prev Med. 2005;29:171–8.CrossRef
27.
go back to reference Gutin B. Child obesity can be reduced with vigorous activity rather than restriction of energy intake. Obesity (Silver Spring). 2008;16:2193–6.CrossRef Gutin B. Child obesity can be reduced with vigorous activity rather than restriction of energy intake. Obesity (Silver Spring). 2008;16:2193–6.CrossRef
28.
go back to reference Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children's physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.CrossRef Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children's physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.CrossRef
29.
go back to reference Colley RC, Harvey A, Grattan KP. Impact of accelerometer epoch length on physical activity and sedentary behaviour outcomes for preschool-aged children. Health Rep. 2014;25:3–9.PubMed Colley RC, Harvey A, Grattan KP. Impact of accelerometer epoch length on physical activity and sedentary behaviour outcomes for preschool-aged children. Health Rep. 2014;25:3–9.PubMed
30.
go back to reference Pate RR, O’Neill JR, Mitchell J. Measurement of physical activity in preschool children. Med Sci Sports Exerc. 2010;42:508–12.CrossRef Pate RR, O’Neill JR, Mitchell J. Measurement of physical activity in preschool children. Med Sci Sports Exerc. 2010;42:508–12.CrossRef
31.
go back to reference Messerli-Burgy N, Kakebeeke TH, Arhab A, Stulb K, Zysset AE, Leeger-Aschmann CS, et al. The Swiss Preschoolers' health study (SPLASHY): objectives and design of a prospective multi-site cohort study assessing psychological and physiological health in young children. BMC Pediatr. 2016;16:85.CrossRef Messerli-Burgy N, Kakebeeke TH, Arhab A, Stulb K, Zysset AE, Leeger-Aschmann CS, et al. The Swiss Preschoolers' health study (SPLASHY): objectives and design of a prospective multi-site cohort study assessing psychological and physiological health in young children. BMC Pediatr. 2016;16:85.CrossRef
32.
go back to reference Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. Obesity (Silver Spring). 2006;14:2000–6.CrossRef Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. Obesity (Silver Spring). 2006;14:2000–6.CrossRef
33.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.CrossRef Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65.CrossRef
34.
go back to reference Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J, Lof M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017. https://doi.org/10.1007/s40279-017-0716-0. Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J, Lof M, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017. https://​doi.​org/​10.​1007/​s40279-017-0716-0.
35.
go back to reference WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development, vol. 312. Geneva: World Health Organization; 2006. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development, vol. 312. Geneva: World Health Organization; 2006.
36.
go back to reference Lohmann TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Illinois: Human Kinetics; 1988. Lohmann TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Illinois: Human Kinetics; 1988.
37.
go back to reference Ganzeboom HBG, Degraaf PM, Treiman DJ, Deleeuw J. A standard international socioeconomic index of occupational-status. Soc Sci Res. 1992;21:1–56.CrossRef Ganzeboom HBG, Degraaf PM, Treiman DJ, Deleeuw J. A standard international socioeconomic index of occupational-status. Soc Sci Res. 1992;21:1–56.CrossRef
38.
go back to reference Burgi F, Meyer U, Niederer I, Ebenegger V, Marques-Vidal P, Granacher U, et al. Socio-cultural determinants of adiposity and physical activity in preschool children: a cross-sectional study. BMC Public Health. 2010;10:733.CrossRef Burgi F, Meyer U, Niederer I, Ebenegger V, Marques-Vidal P, Granacher U, et al. Socio-cultural determinants of adiposity and physical activity in preschool children: a cross-sectional study. BMC Public Health. 2010;10:733.CrossRef
39.
go back to reference Freedman DS, Sherry B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics. 2009;124(Suppl 1):S23–34.CrossRef Freedman DS, Sherry B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics. 2009;124(Suppl 1):S23–34.CrossRef
40.
go back to reference Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, Pierson RN, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes. 2005;29:1–8.CrossRef Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, Pierson RN, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes. 2005;29:1–8.CrossRef
41.
go back to reference Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tato L. Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res. 2001;9:179–87.CrossRef Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tato L. Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res. 2001;9:179–87.CrossRef
42.
go back to reference Boeke CE, Oken E, Kleinman KP, Rifas-Shiman SL, Taveras EM, Gillman MW. Correlations among adiposity measures in school-aged children. BMC Pediatr. 2013;13. Boeke CE, Oken E, Kleinman KP, Rifas-Shiman SL, Taveras EM, Gillman MW. Correlations among adiposity measures in school-aged children. BMC Pediatr. 2013;13.
43.
go back to reference Goran MI, Gower BA. Relation between visceral fat and disease risk in children and adolescents. Am J Clin Nutr. 1999;70:149s–56s.CrossRef Goran MI, Gower BA. Relation between visceral fat and disease risk in children and adolescents. Am J Clin Nutr. 1999;70:149s–56s.CrossRef
44.
go back to reference Meredith-Jones K, Williams S, Galland B, Kennedy G, Taylor R. 24 h Accelerometry: impact of sleep-screening methods on estimates of sedentary behaviour and physical activity while awake. J Sports Sci. 2016;34:679–85.CrossRef Meredith-Jones K, Williams S, Galland B, Kennedy G, Taylor R. 24 h Accelerometry: impact of sleep-screening methods on estimates of sedentary behaviour and physical activity while awake. J Sports Sci. 2016;34:679–85.CrossRef
Metadata
Title
Association of physical activity with adiposity in preschoolers using different clinical adiposity measures: a cross-sectional study
Authors
Amar Arhab
Nadine Messerli-Bürgy
Tanja H. Kakebeeke
Kerstin Stülb
Annina Zysset
Claudia S. Leeger-Aschmann
Einat A. Schmutz
Andrea H. Meyer
Simone Munsch
Susi Kriemler
Oskar G. Jenni
Jardena J. Puder
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1764-4

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue