Skip to main content
Top
Published in: Critical Care 1/2021

Open Access 01-12-2021 | Nutrition | Research

Energy delivery guided by indirect calorimetry in critically ill patients: a systematic review and meta-analysis

Authors: Jing-Yi Duan, Wen-He Zheng, Hua Zhou, Yuan Xu, Hui-Bin Huang

Published in: Critical Care | Issue 1/2021

Login to get access

Abstract

Background

The use of indirect calorimetry (IC) is increasing due to its precision in resting energy expenditure (REE) measurement in critically ill patients. Thus, we aimed to evaluate the clinical outcomes of an IC-guided nutrition therapy compared to predictive equations strategy in such a patient population.

Methods

We searched PubMed, EMBASE, and Cochrane library databases up to October 25, 2020. Randomized controlled trials (RCTs) were included if they focused on energy delivery guided by either IC or predictive equations in critically ill adults. We used the Cochrane risk-of-bias tool to assess the quality of the included studies. Short-term mortality was the primary outcome. The meta-analysis was performed with the fixed-effect model or random-effect model according to the heterogeneity.

Results

Eight RCTs with 991 adults met the inclusion criteria. The overall quality of the included studies was moderate. Significantly higher mean energy delivered per day was observed in the IC group, as well as percent delivered energy over REE targets, than the control group. IC-guided energy delivery significantly reduced short-term mortality compared with the control group (risk ratio = 0.77; 95% CI 0.60 to 0.98; I2 = 3%, P = 0.03). IC-guided strategy did not significantly prolong the duration of mechanical ventilation (mean difference [MD] = 0.61 days; 95% CI − 1.08 to 2.29; P = 0.48), length of stay in ICU (MD = 0.32 days; 95% CI − 2.51 to 3.16; P = 0.82) and hospital (MD = 0.30 days; 95% CI − 3.23 to 3.83; P = 0.87). Additionally, adverse events were similar between the two groups.

Conclusions

This meta-analysis indicates that IC-guided energy delivery significantly reduces short-term mortality in critically ill patients. This finding encourages the use of IC-guided energy delivery during critical nutrition support. But more high-quality studies are still needed to confirm these findings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care (London, England). 2016;20(1):367.CrossRef Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care (London, England). 2016;20(1):367.CrossRef
2.
go back to reference Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. JPEN J Parenter Enteral Nutr. 2016;40(2):212–25.CrossRef Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review. JPEN J Parenter Enteral Nutr. 2016;40(2):212–25.CrossRef
3.
go back to reference Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect calorimetry: history, technology, and application. Front Pediatr. 2018;6:257.CrossRef Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect calorimetry: history, technology, and application. Front Pediatr. 2018;6:257.CrossRef
4.
go back to reference Porter C, Cohen NH. Indirect calorimetry in critically ill patients: role of the clinical dietitian in interpreting results. J Am Diet Assoc. 1996;96(1):49–57.CrossRef Porter C, Cohen NH. Indirect calorimetry in critically ill patients: role of the clinical dietitian in interpreting results. J Am Diet Assoc. 1996;96(1):49–57.CrossRef
5.
go back to reference Berger MM, Pantet O, Jacquelin-Ravel N, Charrière M, Schmidt S, Becce F, Audran R, Spertini F, Tappy L, Pichard C. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: The SPN2 randomized tracer study. Clin Nutr (Edinburgh, Scotland). 2019;38(5):2408–16.CrossRef Berger MM, Pantet O, Jacquelin-Ravel N, Charrière M, Schmidt S, Becce F, Audran R, Spertini F, Tappy L, Pichard C. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: The SPN2 randomized tracer study. Clin Nutr (Edinburgh, Scotland). 2019;38(5):2408–16.CrossRef
6.
go back to reference Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clinical Research ed). 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clinical Research ed). 2011;343:d5928.CrossRef
7.
go back to reference Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, Grozovski E, Theilla M, Frishman S, Madar Z. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4):601–9.CrossRef Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, Grozovski E, Theilla M, Frishman S, Madar Z. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37(4):601–9.CrossRef
8.
go back to reference Ahmad A, Duerksen DR, Munroe S, Bistrian BR. An evaluation of resting energy expenditure in hospitalized, severely underweight patients. Nutrition (Burbank, Los Angeles County, Calif). 1999;15(5):384–8.CrossRef Ahmad A, Duerksen DR, Munroe S, Bistrian BR. An evaluation of resting energy expenditure in hospitalized, severely underweight patients. Nutrition (Burbank, Los Angeles County, Calif). 1999;15(5):384–8.CrossRef
9.
go back to reference Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet (London, England). 2013;381(9864):385–93.CrossRef Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet (London, England). 2013;381(9864):385–93.CrossRef
10.
go back to reference Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr (Edinburgh, Scotland). 2019;38(1):48–79.CrossRef Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr (Edinburgh, Scotland). 2019;38(1):48–79.CrossRef
11.
go back to reference Tatucu-Babet OA, Fetterplace K, Lambell K, Miller E, Deane AM, Ridley EJ. Is energy delivery guided by indirect calorimetry associated with improved clinical outcomes in critically ill patients? A systematic review and meta-analysis. Nutr Metab Insights. 2020;13:1178638820903295.CrossRef Tatucu-Babet OA, Fetterplace K, Lambell K, Miller E, Deane AM, Ridley EJ. Is energy delivery guided by indirect calorimetry associated with improved clinical outcomes in critically ill patients? A systematic review and meta-analysis. Nutr Metab Insights. 2020;13:1178638820903295.CrossRef
12.
go back to reference Azevedo JRA, Lima HCM, Montenegro WS, Souza SCC, Nogueira I, Silva MM, Muniz NA. Optimized calorie and high protein intake versus recommended caloric-protein intake in critically ill patients: a prospective, randomized, controlled phase II clinical trial. Revista Brasileira de terapia intensiva. 2019;31(2):171–9.CrossRef Azevedo JRA, Lima HCM, Montenegro WS, Souza SCC, Nogueira I, Silva MM, Muniz NA. Optimized calorie and high protein intake versus recommended caloric-protein intake in critically ill patients: a prospective, randomized, controlled phase II clinical trial. Revista Brasileira de terapia intensiva. 2019;31(2):171–9.CrossRef
13.
go back to reference Shi J, Xi L, Chi T, Song J, Wang Z. Application value of resting energy monitoring in nutritional support therapy for mechanical ventilation patients. Zhonghua wei zhong bing ji jiu yi xue. 2019;31(1):98–101.PubMed Shi J, Xi L, Chi T, Song J, Wang Z. Application value of resting energy monitoring in nutritional support therapy for mechanical ventilation patients. Zhonghua wei zhong bing ji jiu yi xue. 2019;31(1):98–101.PubMed
14.
go back to reference Singer P, De Waele E, Sanchez C, Ruiz Santana S, Montejo JC, Laterre PF, Soroksky A, Moscovici E, Kagan I. TICACOS international: a multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study. Clin Nutr (Edinburgh, Scotland). 2020;40:380–7.CrossRef Singer P, De Waele E, Sanchez C, Ruiz Santana S, Montejo JC, Laterre PF, Soroksky A, Moscovici E, Kagan I. TICACOS international: a multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study. Clin Nutr (Edinburgh, Scotland). 2020;40:380–7.CrossRef
15.
go back to reference Zhao S, Duan L, Yu G, Zou Q, Wu Q, Wang H, He X. Changing laws of rest energy expenditure in critically ill patients and the intervention effect for nutritional support: a prospective study. Zhonghua wei zhong bing ji jiu yi xue. 2019;31(12):1512–6.PubMed Zhao S, Duan L, Yu G, Zou Q, Wu Q, Wang H, He X. Changing laws of rest energy expenditure in critically ill patients and the intervention effect for nutritional support: a prospective study. Zhonghua wei zhong bing ji jiu yi xue. 2019;31(12):1512–6.PubMed
16.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–41.CrossRef
17.
go back to reference Wang F, Wu Y, Bo L, Lou J, Zhu J, Chen F, Li J, Deng X. The timing of tracheotomy in critically ill patients undergoing mechanical ventilation: a systematic review and meta-analysis of randomized controlled trials. Chest. 2011;140(6):1456–65.CrossRef Wang F, Wu Y, Bo L, Lou J, Zhu J, Chen F, Li J, Deng X. The timing of tracheotomy in critically ill patients undergoing mechanical ventilation: a systematic review and meta-analysis of randomized controlled trials. Chest. 2011;140(6):1456–65.CrossRef
18.
go back to reference Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Research ed). 2003;327(7414):557–60.CrossRef Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Research ed). 2003;327(7414):557–60.CrossRef
19.
go back to reference Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRef Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRef
20.
go back to reference Allingstrup MJ, Kondrup J, Wiis J, Claudius C, Pedersen UG, Hein-Rasmussen R, Bjerregaard MR, Steensen M, Jensen TH, Lange T, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017;43(11):1637–47.CrossRef Allingstrup MJ, Kondrup J, Wiis J, Claudius C, Pedersen UG, Hein-Rasmussen R, Bjerregaard MR, Steensen M, Jensen TH, Lange T, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017;43(11):1637–47.CrossRef
21.
go back to reference Gonzalez-Granda A, Schollenberger A, Haap M, Riessen R, Bischoff SC. Optimization of nutrition therapy with the use of calorimetry to determine and control energy needs in mechanically ventilated critically ill patients: the ONCA study, a randomized, prospective pilot study. JPEN J Parenter Enteral Nutr. 2019;43(4):481–9.CrossRef Gonzalez-Granda A, Schollenberger A, Haap M, Riessen R, Bischoff SC. Optimization of nutrition therapy with the use of calorimetry to determine and control energy needs in mechanically ventilated critically ill patients: the ONCA study, a randomized, prospective pilot study. JPEN J Parenter Enteral Nutr. 2019;43(4):481–9.CrossRef
22.
go back to reference Landes S, McClave SA, Frazier TH, Lowen CC, Hurt RT. Indirect calorimetry: is it required to maximize patient outcome from nutrition therapy? Curr Nutr Rep. 2016;5(3):233–9.CrossRef Landes S, McClave SA, Frazier TH, Lowen CC, Hurt RT. Indirect calorimetry: is it required to maximize patient outcome from nutrition therapy? Curr Nutr Rep. 2016;5(3):233–9.CrossRef
23.
go back to reference Yang X, Ma G, Wang LJ, Ma XD. Comparison of respiratory indirect calorimetry and Harris–Benedict coefficient in guiding energy target in patients with sepsis. Chin J Clin Nutr. 2016;24(004):193–8. Yang X, Ma G, Wang LJ, Ma XD. Comparison of respiratory indirect calorimetry and Harris–Benedict coefficient in guiding energy target in patients with sepsis. Chin J Clin Nutr. 2016;24(004):193–8.
24.
go back to reference Petros S, Horbach M, Seidel F, Weidhase L. Hypocaloric vs normocaloric nutrition in critically ill patients: a prospective randomized pilot trial. JPEN J Parenter Enteral Nutr. 2016;40(2):242–9.CrossRef Petros S, Horbach M, Seidel F, Weidhase L. Hypocaloric vs normocaloric nutrition in critically ill patients: a prospective randomized pilot trial. JPEN J Parenter Enteral Nutr. 2016;40(2):242–9.CrossRef
25.
go back to reference Frankenfield DC, Coleman A, Alam S, Cooney RN. Analysis of estimation methods for resting metabolic rate in critically ill adults. JPEN J Parenter Enteral Nutr. 2009;33(1):27–36.CrossRef Frankenfield DC, Coleman A, Alam S, Cooney RN. Analysis of estimation methods for resting metabolic rate in critically ill adults. JPEN J Parenter Enteral Nutr. 2009;33(1):27–36.CrossRef
26.
go back to reference Zusman O, Kagan I, Bendavid I, Theilla M, Cohen J, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation. Clin Nutr (Edinburgh, Scotland). 2019;38(3):1206–10.CrossRef Zusman O, Kagan I, Bendavid I, Theilla M, Cohen J, Singer P. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation. Clin Nutr (Edinburgh, Scotland). 2019;38(3):1206–10.CrossRef
27.
go back to reference Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, Berger MM. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr (Edinburgh, Scotland). 2005;24(4):502–9.CrossRef Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, Berger MM. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr (Edinburgh, Scotland). 2005;24(4):502–9.CrossRef
28.
go back to reference Heyland DK, Cahill N, Day AG. Optimal amount of calories for critically ill patients: depends on how you slice the cake! Crit Care Med. 2011;39(12):2619–26.CrossRef Heyland DK, Cahill N, Day AG. Optimal amount of calories for critically ill patients: depends on how you slice the cake! Crit Care Med. 2011;39(12):2619–26.CrossRef
Metadata
Title
Energy delivery guided by indirect calorimetry in critically ill patients: a systematic review and meta-analysis
Authors
Jing-Yi Duan
Wen-He Zheng
Hua Zhou
Yuan Xu
Hui-Bin Huang
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Nutrition
Published in
Critical Care / Issue 1/2021
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03508-6

Other articles of this Issue 1/2021

Critical Care 1/2021 Go to the issue