Skip to main content
Top
Published in: European Archives of Oto-Rhino-Laryngology 3/2012

01-03-2012 | Rhinology

Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model

Authors: Jie Tan, Demin Han, Jie Wang, Ting Liu, Tong Wang, Hongrui Zang, Yunchuan Li, Xiangdong Wang

Published in: European Archives of Oto-Rhino-Laryngology | Issue 3/2012

Login to get access

Abstract

Our purpose is to simulate the airflow inside the healthy Chinese nose with normal nasal structure and function by computational fluid dynamics (CFD) method and to analyze the relationship between the airflow and physiological function. In this study, we used the software MIMICS 13.0 to construct 20 3-dimensional (3-D) models based on the computer tomography scans of Chinese adults’ nose with normal nasal structure and function. Thereafter, numerical simulations were carried out using the software FLUENT 6.3. Then the characteristics of airflow inside the airway and sinuses were demonstrated qualitatively and quantitatively in steady state. We found that during the inhalation phase, the vortices and turbulences were located at anterior part and bottom of the nasal cavity. But there is no vortex in the whole nasal cavity during the expiratory phase. The distributions of pressure and wall shear stress are different in two phases. The maximum airflow velocity occurs around the plane of palatine velum during both inspiratory and expiratory phases. After the airflow passed the nasal valve, the peak velocity of inhaled airflow decreases and it increases again at the postnaris. Vice versa, the exhaled airflow decelerates after it passed the postnaris and it accelerates again at nasal valve. The data collected in this presentation validates the effectiveness of CFD simulation in the study of airflow in the nasal cavity. Nasal airflow is closely related to the structure and physiological functions of the nasal cavity. CFD may thus also be used to study nasal airflow changes resulting from abnormal nasal structure and nasal diseases.
Literature
1.
go back to reference Chen XB, Lee HP, Chong VF, de Wang Y (2009) Assessment of septal deviation effects on nasal airflow: a computational fluid dynamics model. Laryngoscope 119(9):1730–1736PubMedCrossRef Chen XB, Lee HP, Chong VF, de Wang Y (2009) Assessment of septal deviation effects on nasal airflow: a computational fluid dynamics model. Laryngoscope 119(9):1730–1736PubMedCrossRef
2.
go back to reference Croce C, Fodil R, Durand M, Sbirlea-Apiou G, Caillibotte G, Papon JF et al (2006) In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 34(6):997–1007PubMedCrossRef Croce C, Fodil R, Durand M, Sbirlea-Apiou G, Caillibotte G, Papon JF et al (2006) In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann Biomed Eng 34(6):997–1007PubMedCrossRef
3.
go back to reference Elad D, Liebenthal R, Wenig BL, Einav S (1993) Analysis of air flow patterns in the human nose. Med Biol Eng Comput 31(6):585–592PubMedCrossRef Elad D, Liebenthal R, Wenig BL, Einav S (1993) Analysis of air flow patterns in the human nose. Med Biol Eng Comput 31(6):585–592PubMedCrossRef
4.
go back to reference Lee HP, Poh HJ, Chong FH, de Wang Y (2009) Changes of airflow pattern in inferior turbinate hypertrophy: a computational fluid dynamics model. Am J Rhinol Allergy 23(2):153–158PubMedCrossRef Lee HP, Poh HJ, Chong FH, de Wang Y (2009) Changes of airflow pattern in inferior turbinate hypertrophy: a computational fluid dynamics model. Am J Rhinol Allergy 23(2):153–158PubMedCrossRef
5.
go back to reference Yu S, Liu Y, Sun X, Li S (2008) Influence of nasal structure on the distribution of airflow in nasal cavity. Rhinology 46(2):137–143PubMed Yu S, Liu Y, Sun X, Li S (2008) Influence of nasal structure on the distribution of airflow in nasal cavity. Rhinology 46(2):137–143PubMed
6.
go back to reference Keyhani K, Scherer PW, Mozell MM (1995) Numerical simulation of airflow in the human nasal cavity. J Biomech Eng 117(4):429–441PubMedCrossRef Keyhani K, Scherer PW, Mozell MM (1995) Numerical simulation of airflow in the human nasal cavity. J Biomech Eng 117(4):429–441PubMedCrossRef
7.
go back to reference Arthur C, Guyton MD, Hall JE (2005) Textbook of medical physiology, 11th edn. Pennsylvania, Saunders, pp 471–482 Arthur C, Guyton MD, Hall JE (2005) Textbook of medical physiology, 11th edn. Pennsylvania, Saunders, pp 471–482
8.
go back to reference Wen J, Inthavong K, Tu J, Wang S (2008) Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol 161(2):125–135PubMedCrossRef Wen J, Inthavong K, Tu J, Wang S (2008) Numerical simulations for detailed airflow dynamics in a human nasal cavity. Respir Physiol Neurobiol 161(2):125–135PubMedCrossRef
9.
go back to reference Xiong GX, Zhan JM, Jiang HY, Li JF, Rong LW, Xu G (2008) Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol 22(5):477–482PubMedCrossRef Xiong GX, Zhan JM, Jiang HY, Li JF, Rong LW, Xu G (2008) Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol 22(5):477–482PubMedCrossRef
10.
go back to reference Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T (2006) Visualization of flow resistance in physiological nasal respiration analysis of velocity and vorticities using numerical simulation. Arch Otolaryngol Head Neck Surg 132(11):1203–1209PubMedCrossRef Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T (2006) Visualization of flow resistance in physiological nasal respiration analysis of velocity and vorticities using numerical simulation. Arch Otolaryngol Head Neck Surg 132(11):1203–1209PubMedCrossRef
11.
go back to reference Jeong SJ, Kim WS, Sung SJ (2007) Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Med Eng Phys 29(6):637–651PubMedCrossRef Jeong SJ, Kim WS, Sung SJ (2007) Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Med Eng Phys 29(6):637–651PubMedCrossRef
12.
go back to reference Chung SK, Son YR, Shin SJ, Kim SK (2006) Nasal airflow during respiratory cycle. Am J Rhinol 20(4):379–384PubMedCrossRef Chung SK, Son YR, Shin SJ, Kim SK (2006) Nasal airflow during respiratory cycle. Am J Rhinol 20(4):379–384PubMedCrossRef
13.
go back to reference Joerg L, Tilman K, Kerstin W, Bjoern S, Hans-Juergen B, Gerhard R et al (2004) A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 114(6):1037–1041CrossRef Joerg L, Tilman K, Kerstin W, Bjoern S, Hans-Juergen B, Gerhard R et al (2004) A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 114(6):1037–1041CrossRef
14.
go back to reference Bockholt U, Mlynski G, Müller W, Voss G (2000) Rhinosurgical therapy planning via endonasal airflow simulation. Comput Aided Surg 5(3):175–179PubMedCrossRef Bockholt U, Mlynski G, Müller W, Voss G (2000) Rhinosurgical therapy planning via endonasal airflow simulation. Comput Aided Surg 5(3):175–179PubMedCrossRef
15.
go back to reference Kimbell JS, Subramaniam RP, Gross EA, Schlosser PM, Morgan KT (2001) Dosimetry modeling of inhaled formaldehyde: comparisons of local flux predictions in the rat, monkey, and human nasal passages. Toxicol Sci 64(1):100–110PubMed Kimbell JS, Subramaniam RP, Gross EA, Schlosser PM, Morgan KT (2001) Dosimetry modeling of inhaled formaldehyde: comparisons of local flux predictions in the rat, monkey, and human nasal passages. Toxicol Sci 64(1):100–110PubMed
16.
go back to reference Müller-Wittig W, Mlynsji G, Weinhold I, Bockholt U, Voss G (2002) Nasal airflow diagnosis: comparison of experimental studies and computer simulations. Stud Health Technol Inform 85:311–317PubMed Müller-Wittig W, Mlynsji G, Weinhold I, Bockholt U, Voss G (2002) Nasal airflow diagnosis: comparison of experimental studies and computer simulations. Stud Health Technol Inform 85:311–317PubMed
17.
go back to reference Weinhold I, Mlynski G (2004) Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 261(8):452–455PubMedCrossRef Weinhold I, Mlynski G (2004) Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 261(8):452–455PubMedCrossRef
18.
go back to reference Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G et al (2004) A numerical simulation of intranasalair temperature during inspiration. Laryngoscope 114(6):1037–1041PubMedCrossRef Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G et al (2004) A numerical simulation of intranasalair temperature during inspiration. Laryngoscope 114(6):1037–1041PubMedCrossRef
19.
go back to reference Zhao K, Scherer PW, Hajiloo SA, Dalton P (2004) Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 29(5):365–379PubMedCrossRef Zhao K, Scherer PW, Hajiloo SA, Dalton P (2004) Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 29(5):365–379PubMedCrossRef
20.
go back to reference Abe K, Kondoh T, Nagano Y (1994) A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I Flow field calculations. Int J Heat Mass Transfer 37(1):139–151CrossRef Abe K, Kondoh T, Nagano Y (1994) A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I Flow field calculations. Int J Heat Mass Transfer 37(1):139–151CrossRef
21.
go back to reference Robert GH (2001) Forced inspiratory nasal flow—volume curves, a simple test of nasal airflow. Mayo Clin Proc 76(10):990–994CrossRef Robert GH (2001) Forced inspiratory nasal flow—volume curves, a simple test of nasal airflow. Mayo Clin Proc 76(10):990–994CrossRef
22.
go back to reference Lee JH, Na Y, Kim SK, Chung SK (2010) Unsteady flow characteristics through a human nasal airway. Respir Physiol Neurobiol 172(3):136–146PubMedCrossRef Lee JH, Na Y, Kim SK, Chung SK (2010) Unsteady flow characteristics through a human nasal airway. Respir Physiol Neurobiol 172(3):136–146PubMedCrossRef
23.
go back to reference Elad D, Wolf M, Keck T (2008) Air-conditioning in the human nasal cavity. Respir Physiol Neurobiol 163(1–3):121–127PubMedCrossRef Elad D, Wolf M, Keck T (2008) Air-conditioning in the human nasal cavity. Respir Physiol Neurobiol 163(1–3):121–127PubMedCrossRef
24.
go back to reference Zamankhan P, Ahmadi, Wang ZC (2006) Airflow and deposition of nanoparticles in a human nasal cavity. Aerosol Sci Technol 40(5):463–476 Zamankhan P, Ahmadi, Wang ZC (2006) Airflow and deposition of nanoparticles in a human nasal cavity. Aerosol Sci Technol 40(5):463–476
25.
go back to reference Doorly DJ, Taylor DJ, Schroter RC (2008) Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 163(1–3):100–110PubMedCrossRef Doorly DJ, Taylor DJ, Schroter RC (2008) Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 163(1–3):100–110PubMedCrossRef
26.
go back to reference Thacher TN, Gambillara V, Riche F, Silacci P, Stergiopulos N, da Silva RF (2010) Regulation of arginase pathway in response to wall shear stress. Atherosclerosis 210(1):63–70PubMedCrossRef Thacher TN, Gambillara V, Riche F, Silacci P, Stergiopulos N, da Silva RF (2010) Regulation of arginase pathway in response to wall shear stress. Atherosclerosis 210(1):63–70PubMedCrossRef
27.
go back to reference Garcia GJ, Bailie N, Martins DA, Kimbell JS (2007) Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol 103(3):1082–1092PubMedCrossRef Garcia GJ, Bailie N, Martins DA, Kimbell JS (2007) Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol 103(3):1082–1092PubMedCrossRef
28.
go back to reference Leong SC, Chen XB, Lee HP, Wang DY (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48(2):139–145PubMed Leong SC, Chen XB, Lee HP, Wang DY (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48(2):139–145PubMed
29.
go back to reference Ubramaniam RP, Richardson RB, Morgan KT et al (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalation Toxicol 10:91–120CrossRef Ubramaniam RP, Richardson RB, Morgan KT et al (1998) Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalation Toxicol 10:91–120CrossRef
30.
go back to reference Hahn I, Scherer PW, Mozell MM (1993) Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol 75(5):2273–2287PubMed Hahn I, Scherer PW, Mozell MM (1993) Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol 75(5):2273–2287PubMed
31.
go back to reference Tarabichi M, Fanous N (1993) Finite element analysis of airflow in the nasal valve. Arch Otolaryngol Head Neck Surg 119(6):638–642PubMedCrossRef Tarabichi M, Fanous N (1993) Finite element analysis of airflow in the nasal valve. Arch Otolaryngol Head Neck Surg 119(6):638–642PubMedCrossRef
Metadata
Title
Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model
Authors
Jie Tan
Demin Han
Jie Wang
Ting Liu
Tong Wang
Hongrui Zang
Yunchuan Li
Xiangdong Wang
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
European Archives of Oto-Rhino-Laryngology / Issue 3/2012
Print ISSN: 0937-4477
Electronic ISSN: 1434-4726
DOI
https://doi.org/10.1007/s00405-011-1771-z

Other articles of this Issue 3/2012

European Archives of Oto-Rhino-Laryngology 3/2012 Go to the issue