Skip to main content
Top
Published in: Journal of Artificial Organs 4/2017

01-12-2017 | Original Article

Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels

Authors: Toru Hyakutake, Takumi Kishimoto

Published in: Journal of Artificial Organs | Issue 4/2017

Login to get access

Abstract

The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction–diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Literature
4.
go back to reference Meng F, Tsai AG, Intaglietta M, Acharya SA. Pegylation of αα-Hb succinimidyl propionic acid peg 5K. Artif Cells Nanomed Biotechnol. 2015;43:270–81.CrossRefPubMed Meng F, Tsai AG, Intaglietta M, Acharya SA. Pegylation of αα-Hb succinimidyl propionic acid peg 5K. Artif Cells Nanomed Biotechnol. 2015;43:270–81.CrossRefPubMed
5.
go back to reference Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299:2304–12.CrossRefPubMed Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299:2304–12.CrossRefPubMed
6.
go back to reference Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Haemoglobin-vesicles as artificial oxygen carriers: present situation and future visions. J Intern Med. 2008;263:4–15.PubMed Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Haemoglobin-vesicles as artificial oxygen carriers: present situation and future visions. J Intern Med. 2008;263:4–15.PubMed
7.
go back to reference Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif Organs. 2009;33:139–45.CrossRefPubMed Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Review of hemoglobin-vesicles as artificial oxygen carriers. Artif Organs. 2009;33:139–45.CrossRefPubMed
8.
go back to reference Tomita D, Kimura T, Hosaka H, Daijima Y, Haruki R, Ludwig K, Bottcher C, Komatsu T. Covalent core-shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules. 2013;14:1816–25.CrossRefPubMed Tomita D, Kimura T, Hosaka H, Daijima Y, Haruki R, Ludwig K, Bottcher C, Komatsu T. Covalent core-shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromolecules. 2013;14:1816–25.CrossRefPubMed
9.
go back to reference Oda T, Nakajima Y, Kimura T, Ogata Y, Fujise Y. Hemodilution with liposome-encapsulated low-oxygen affinity hemoglobin facilitates rapid recovery from ischemic acidosis after cerebral ischemia in rats. J Artif Organs. 2004;7:101–6.PubMed Oda T, Nakajima Y, Kimura T, Ogata Y, Fujise Y. Hemodilution with liposome-encapsulated low-oxygen affinity hemoglobin facilitates rapid recovery from ischemic acidosis after cerebral ischemia in rats. J Artif Organs. 2004;7:101–6.PubMed
10.
go back to reference George I, Yi GH, Schulman AR, Morrow BT, Cheng Y, Gu A, Zhang G, Oz MC, Burkhoff D, Wang J. A polymerized bovine hemoglobin oxygen carrier preserves regional myocardial function and reduces infarct size after acute myocardial ischemia. Am J Physiol Heart Circ Physiol. 2006;291:1126–37.CrossRef George I, Yi GH, Schulman AR, Morrow BT, Cheng Y, Gu A, Zhang G, Oz MC, Burkhoff D, Wang J. A polymerized bovine hemoglobin oxygen carrier preserves regional myocardial function and reduces infarct size after acute myocardial ischemia. Am J Physiol Heart Circ Physiol. 2006;291:1126–37.CrossRef
11.
go back to reference Kawaguchi AT, Fukumoto D, Haida M, Ogata Y, Yamano M, Tsukada H. Liposome encapsulated hemoglobin reduces size of cerebral infarction in the rat. Stroke. 2007;38:1626–32.CrossRefPubMed Kawaguchi AT, Fukumoto D, Haida M, Ogata Y, Yamano M, Tsukada H. Liposome encapsulated hemoglobin reduces size of cerebral infarction in the rat. Stroke. 2007;38:1626–32.CrossRefPubMed
12.
go back to reference Isaka M, Imamura M, Sakuma I, Shiiya N, Ishizuka T, Ogata Y, Yasuda K. Experimental study of pegylated liposomal hemoglobin on norepinephrine release and reperfusion arrhythmias in isolated guinea pig hearts. Ann Thorac Cardiovasc Surg. 2007;13:391–5.PubMed Isaka M, Imamura M, Sakuma I, Shiiya N, Ishizuka T, Ogata Y, Yasuda K. Experimental study of pegylated liposomal hemoglobin on norepinephrine release and reperfusion arrhythmias in isolated guinea pig hearts. Ann Thorac Cardiovasc Surg. 2007;13:391–5.PubMed
13.
go back to reference Matsumoto T, Asano T, Mano K, Tachibana H, Todoh M, Tanaka M, Kajiya F. Regional myocardial perfusion under exchange transfusion with liposomal hemoglobin: in vivo and in vitro studies using rat hearts. Am J Physiol Heart Circ Physiol. 2005;288:1909–14.CrossRef Matsumoto T, Asano T, Mano K, Tachibana H, Todoh M, Tanaka M, Kajiya F. Regional myocardial perfusion under exchange transfusion with liposomal hemoglobin: in vivo and in vitro studies using rat hearts. Am J Physiol Heart Circ Physiol. 2005;288:1909–14.CrossRef
14.
go back to reference Plock JA, Rafatmehr N, Sinovcic D, Schnider J, Sakai H, Tsuchida E, Banic A, Erni D. Hemoglobin vesicles improve wound healing and tissue survival in critically ischemic skin in mice. Am J Physiol Heart Circ Physiol. 2009;297:905–10.CrossRef Plock JA, Rafatmehr N, Sinovcic D, Schnider J, Sakai H, Tsuchida E, Banic A, Erni D. Hemoglobin vesicles improve wound healing and tissue survival in critically ischemic skin in mice. Am J Physiol Heart Circ Physiol. 2009;297:905–10.CrossRef
15.
go back to reference Hyakutake T, Tominaga S, Matsumoto T, Yanase S. Numerical study on flows of red blood Cells with liposome-encapsulated hemoglobin at microvascular bifurcation. J Biomech Eng Trans ASME. 2008;130:011014.CrossRef Hyakutake T, Tominaga S, Matsumoto T, Yanase S. Numerical study on flows of red blood Cells with liposome-encapsulated hemoglobin at microvascular bifurcation. J Biomech Eng Trans ASME. 2008;130:011014.CrossRef
16.
go back to reference Hyakutake T, Akagi Y, Imaru T, Matsumoto T, Yanase S. Numerical study on effects of liposome-encapsulated hemoglobin on blood flows at microvascular bifurcation with considering erythrocyte aggregation. Int Fed Med Biol Eng Proc. 2010;31:1059–62. Hyakutake T, Akagi Y, Imaru T, Matsumoto T, Yanase S. Numerical study on effects of liposome-encapsulated hemoglobin on blood flows at microvascular bifurcation with considering erythrocyte aggregation. Int Fed Med Biol Eng Proc. 2010;31:1059–62.
18.
go back to reference Hellums JD, Nair PK, Huang NS, Ohshima N. Simulation of intraluminal gas transport processes in the microcirculation. Ann Biomed Eng. 1996;24:1–24.CrossRefPubMed Hellums JD, Nair PK, Huang NS, Ohshima N. Simulation of intraluminal gas transport processes in the microcirculation. Ann Biomed Eng. 1996;24:1–24.CrossRefPubMed
19.
go back to reference Vadapalli A, Goldman D, Popel AS. Calculation of oxygen transport by red blood cells and hemoglobin solutions in capillaries. Art Cells Blood Subs Immob Biotech. 2002;30:157–88.CrossRef Vadapalli A, Goldman D, Popel AS. Calculation of oxygen transport by red blood cells and hemoglobin solutions in capillaries. Art Cells Blood Subs Immob Biotech. 2002;30:157–88.CrossRef
20.
go back to reference Tsoukias NM, Goldman D, Vadapalli A, Pittman R, Popel AS. A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular network. J Theor Biol. 2007;248:657–74.CrossRefPubMedPubMedCentral Tsoukias NM, Goldman D, Vadapalli A, Pittman R, Popel AS. A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular network. J Theor Biol. 2007;248:657–74.CrossRefPubMedPubMedCentral
21.
go back to reference Gundersen SI, Palmer AF. Hemoglobin-based oxygen carrier enhanced tumor oxygenation: a novel strategy for cancer therapy. Biotechnol Prog. 2008;24:1353–64.CrossRefPubMed Gundersen SI, Palmer AF. Hemoglobin-based oxygen carrier enhanced tumor oxygenation: a novel strategy for cancer therapy. Biotechnol Prog. 2008;24:1353–64.CrossRefPubMed
22.
go back to reference Sakai H, Okuda N, Sato A, Yamaue T, Takeoka S, Tsuchida E. Hemoglobin encapsulation in vesicles retards NO and CO binding and O2 release when perfused through narrow gas-permeable tubes. Am J Physiol Heart Circ Physiol. 2010;298:956–65.CrossRef Sakai H, Okuda N, Sato A, Yamaue T, Takeoka S, Tsuchida E. Hemoglobin encapsulation in vesicles retards NO and CO binding and O2 release when perfused through narrow gas-permeable tubes. Am J Physiol Heart Circ Physiol. 2010;298:956–65.CrossRef
23.
go back to reference McNamara G, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett. 1998;61:2332–5.CrossRef McNamara G, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett. 1998;61:2332–5.CrossRef
24.
go back to reference Succi S. The Lattice Boltzmann Equation. Oxford: Clarendon Press; 2001. Succi S. The Lattice Boltzmann Equation. Oxford: Clarendon Press; 2001.
25.
go back to reference Inamuro T, Yoshino M, Inoue H, Mizuno R, Ogino R. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J Comput Phys. 2002;179:201–15.CrossRef Inamuro T, Yoshino M, Inoue H, Mizuno R, Ogino R. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J Comput Phys. 2002;179:201–15.CrossRef
26.
go back to reference Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94:511–25.CrossRef Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954;94:511–25.CrossRef
27.
go back to reference Qian TH, d’Humiéres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett. 1992;17:479–84.CrossRef Qian TH, d’Humiéres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett. 1992;17:479–84.CrossRef
28.
go back to reference Sakai H, Tsai AG, Rohlfs RJ, Hara H, Takeoka S, Tsuchida E, Intaglietta M. Microvascular responses to hemodilution with Hb vesicles as red blood cell substitutes: influence of O2 affinity. Am J Physiol Heart Circ Physiol. 1999;276:H553–62. Sakai H, Tsai AG, Rohlfs RJ, Hara H, Takeoka S, Tsuchida E, Intaglietta M. Microvascular responses to hemodilution with Hb vesicles as red blood cell substitutes: influence of O2 affinity. Am J Physiol Heart Circ Physiol. 1999;276:H553–62.
29.
go back to reference Ellsworth ML, Popel AS, Pittman RN. Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res. 1988;35:341–62.CrossRefPubMed Ellsworth ML, Popel AS, Pittman RN. Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res. 1988;35:341–62.CrossRefPubMed
30.
go back to reference Patton JN, Palmer AF. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers. Biotechnol Prog. 2006;22:1025–49.CrossRefPubMed Patton JN, Palmer AF. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers. Biotechnol Prog. 2006;22:1025–49.CrossRefPubMed
31.
go back to reference Ye T, Phan-Thienb N, Lim CT. Particle-based simulations of red blood cells-A review. J Biomech. 2016;49:2255–66.CrossRefPubMed Ye T, Phan-Thienb N, Lim CT. Particle-based simulations of red blood cells-A review. J Biomech. 2016;49:2255–66.CrossRefPubMed
32.
go back to reference Hyakutake T, Nagai S. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. Microvasc Res. 2015;97:115–23.CrossRefPubMed Hyakutake T, Nagai S. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. Microvasc Res. 2015;97:115–23.CrossRefPubMed
Metadata
Title
Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels
Authors
Toru Hyakutake
Takumi Kishimoto
Publication date
01-12-2017
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 4/2017
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-017-0974-5

Other articles of this Issue 4/2017

Journal of Artificial Organs 4/2017 Go to the issue