Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2015

Open Access 01-12-2015 | Research article

Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery

Authors: Wei-Hsiang Chang, Ying-Lan Tsai, Chih-Yang Huang, City C. Hsieh, Rungchai Chaunchaiyakul, Yu Fang, Shin-Da Lee, Chia-Hua Kuo

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2015

Login to get access

Abstract

Background

Ginsenoside Rb1, a principle active ingredients of Panax ginseng, has been shown to lower blood glucose in animals and increase insulin secretion in cultured insulinoma cells. The aim of this study was to determine the effects of daily ginsenoside Rb1 supplementation on circulating glucose and insulin levels in men during a 5-day recovery period after an acute bout of resistance exercise.

Methods

Twelve gymnasts (20.5 ± 0.3 years of age) participated in this double blind placebo-controlled crossover trial. They were challenged by a lower-limb resistance exercise at a weight load of 85 % one-repetition maximal (1-RM) for 10 repetitions, six sets of the movement. Rb1 (1 ng/kg) or Placebo was orally delivered to participants daily during a 5-day recovery period after challenge. Circulating insulin, glucose and heart rate variability (HRV) were measured under fasted condition in the morning at Days 1, Day 3, and Day 5 during recovery.

Results

No significant effect of Rb1 on circulating glucose and insulin levels were found among participants during the 5-day recovery period. A persistent elevation in sympathetic nervous activity, indicated by increased HRV-low frequency/high frequency (HRV-LF/HF) power, during the Rb1 trial was observed.

Conclusions

The result of the study suggests that the null effect of Rb1 supplementation on lowering glucose and insulin levels of participants may be associated with chronic sympathetic activation.
Literature
1.
go back to reference Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V. Decreasing, null and increasing effects of eight popular types of ginseng on acute postprandial glycemic indices in healthy humans: the role of ginsenosides. J Am Coll Nutr. 2004;23(3):248–58.CrossRefPubMed Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V. Decreasing, null and increasing effects of eight popular types of ginseng on acute postprandial glycemic indices in healthy humans: the role of ginsenosides. J Am Coll Nutr. 2004;23(3):248–58.CrossRefPubMed
2.
go back to reference Reay JL, Kennedy DO, Scholey AB. Single doses of panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J Psychopharmacol. 2005;19(4):357–65.CrossRefPubMed Reay JL, Kennedy DO, Scholey AB. Single doses of panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J Psychopharmacol. 2005;19(4):357–65.CrossRefPubMed
3.
go back to reference Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V. Variable effects of American ginseng: a batch of American ginseng (panax quinquefolius L.) with a depressed ginsenoside profile does not affect postprandial glycemia. Eur J Clin Nutr. 2003;57(2):243–8.CrossRefPubMed Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V. Variable effects of American ginseng: a batch of American ginseng (panax quinquefolius L.) with a depressed ginsenoside profile does not affect postprandial glycemia. Eur J Clin Nutr. 2003;57(2):243–8.CrossRefPubMed
4.
go back to reference Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in panax species using high performance liquid chromatography. Chem Pharm Bull (Tokyo). 2003;51(11):1314–7.CrossRef Washida D, Kitanaka S. Determination of polyacetylenes and ginsenosides in panax species using high performance liquid chromatography. Chem Pharm Bull (Tokyo). 2003;51(11):1314–7.CrossRef
5.
go back to reference Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3 T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem. 2008;72(11):2815–23.CrossRefPubMed Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3 T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem. 2008;72(11):2815–23.CrossRefPubMed
6.
go back to reference Xiong Y, Shen L, Liu KJ, Tso P, Xiong Y, Wang G, et al. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes. 2010;59(10):2505–12.PubMedCentralCrossRefPubMed Xiong Y, Shen L, Liu KJ, Tso P, Xiong Y, Wang G, et al. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes. 2010;59(10):2505–12.PubMedCentralCrossRefPubMed
7.
go back to reference Carnethon M, Craft L. Autonomic regulation of the association between exercise and diabetes. Exerc Sport Sci Rev. 2008;36(1):12–8.CrossRefPubMed Carnethon M, Craft L. Autonomic regulation of the association between exercise and diabetes. Exerc Sport Sci Rev. 2008;36(1):12–8.CrossRefPubMed
8.
go back to reference Surwit RS, Feinglos MN. Stress and autonomic nervous system in type 2 diabetes: a hypothesis. Diabetes Care. 1988;11(1):83–5.CrossRefPubMed Surwit RS, Feinglos MN. Stress and autonomic nervous system in type 2 diabetes: a hypothesis. Diabetes Care. 1988;11(1):83–5.CrossRefPubMed
9.
go back to reference Porges SW. Vagal tone: a physiologic marker of stress vulnerability. Pediatrics. 1992;90(3):498–504.PubMed Porges SW. Vagal tone: a physiologic marker of stress vulnerability. Pediatrics. 1992;90(3):498–504.PubMed
10.
go back to reference Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension. 1993;21(5):618–23.CrossRefPubMed Jamerson KA, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension. 1993;21(5):618–23.CrossRefPubMed
11.
go back to reference Yook T, Yu J, Lee H, Song B, Kim L, Roh J, et al. Comparing the effects of distilled rehmannia glutinosa, wild ginseng and astragali radix pharmacopuncture with heart rate variability: a randomized, sham-controlled and double-blind clinical trial. J Acupunct Meridian Stud. 2009;2(3):239–47.CrossRefPubMed Yook T, Yu J, Lee H, Song B, Kim L, Roh J, et al. Comparing the effects of distilled rehmannia glutinosa, wild ginseng and astragali radix pharmacopuncture with heart rate variability: a randomized, sham-controlled and double-blind clinical trial. J Acupunct Meridian Stud. 2009;2(3):239–47.CrossRefPubMed
12.
go back to reference Tuominen JA, Ebeling P, Bourey R, Koranyi L, Lamminen A, Rapola J, et al. Postmarathon paradox: insulin resistance in the face of glycogen depletion. Am J Physiol. 1996;270(2 Pt 1):E336–43.PubMed Tuominen JA, Ebeling P, Bourey R, Koranyi L, Lamminen A, Rapola J, et al. Postmarathon paradox: insulin resistance in the face of glycogen depletion. Am J Physiol. 1996;270(2 Pt 1):E336–43.PubMed
13.
go back to reference Tsai YM, Chou SW, Lin YC, Hou CW, Hung KC, Kung HW, et al. Effect of resistance exercise on dehydroepiandrosterone sulfate concentrations during a 72-h recovery: relation to glucose tolerance and insulin response. Life Sci. 2006;79(13):1281–6.CrossRefPubMed Tsai YM, Chou SW, Lin YC, Hou CW, Hung KC, Kung HW, et al. Effect of resistance exercise on dehydroepiandrosterone sulfate concentrations during a 72-h recovery: relation to glucose tolerance and insulin response. Life Sci. 2006;79(13):1281–6.CrossRefPubMed
14.
go back to reference Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. J Agric Food Chem. 2007;55(5):1993–8.CrossRefPubMed Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. J Agric Food Chem. 2007;55(5):1993–8.CrossRefPubMed
15.
go back to reference Heart rate variability. standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur Heart J. 1996;17(3):354–81. Heart rate variability. standards of measurement, physiological interpretation, and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur Heart J. 1996;17(3):354–81.
16.
go back to reference Shang WB, Yu XZ, Wang GQ, Zhao J. Effect of ginsenoside Rb1 in ameliorating insulin resistance and ectopic fat deposition in obese mice induced by high fat diet. Zhongguo Zhong Yao Za Zhi. 2013;38(23):4119–23.PubMed Shang WB, Yu XZ, Wang GQ, Zhao J. Effect of ginsenoside Rb1 in ameliorating insulin resistance and ectopic fat deposition in obese mice induced by high fat diet. Zhongguo Zhong Yao Za Zhi. 2013;38(23):4119–23.PubMed
17.
go back to reference Morris A, Jacobs I, McLellan T, Klugerman A, Wang L, Zamecnik J. No ergogenic effect of ginseng ingestion. Int J Sport Nutr. 1996;6(3):263–71.PubMed Morris A, Jacobs I, McLellan T, Klugerman A, Wang L, Zamecnik J. No ergogenic effect of ginseng ingestion. Int J Sport Nutr. 1996;6(3):263–71.PubMed
18.
go back to reference Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginseng and ginsenoside Re do not improve β-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care. 2011;34(5):1071–6.PubMedCentralCrossRefPubMed Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginseng and ginsenoside Re do not improve β-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care. 2011;34(5):1071–6.PubMedCentralCrossRefPubMed
19.
go back to reference Gamboa A, Okamoto LE, Arnold AC, Figueroa RA, Diedrich A, Raj SR, et al. Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension. 2014;64:867–74.CrossRefPubMed Gamboa A, Okamoto LE, Arnold AC, Figueroa RA, Diedrich A, Raj SR, et al. Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension. 2014;64:867–74.CrossRefPubMed
20.
go back to reference Tan SJ, Li N, Zhou F, Dong QT, Zhang XD, Chen BC, et al. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J Surg Res. 2014;191(2):344–9.CrossRefPubMed Tan SJ, Li N, Zhou F, Dong QT, Zhang XD, Chen BC, et al. Ginsenoside Rb1 improves energy metabolism in the skeletal muscle of an animal model of postoperative fatigue syndrome. J Surg Res. 2014;191(2):344–9.CrossRefPubMed
21.
go back to reference Yang CY, Wang J, Zhao Y, Shen L, Jiang X, Xie ZG, et al. Anti-diabetic effects of panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol. 2010;130(2):231–6.CrossRefPubMed Yang CY, Wang J, Zhao Y, Shen L, Jiang X, Xie ZG, et al. Anti-diabetic effects of panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol. 2010;130(2):231–6.CrossRefPubMed
22.
go back to reference Popov I, Goldwag W. A review of the properties and clinical effects of ginseng. Am J Chin Med (Gard City NY). 1973;1(2):263–70.CrossRef Popov I, Goldwag W. A review of the properties and clinical effects of ginseng. Am J Chin Med (Gard City NY). 1973;1(2):263–70.CrossRef
23.
go back to reference Bahrke M, Morgan W. Evaluation of the ergogenic properties of ginseng. Sports Med. 1994;18(4):229–48.CrossRefPubMed Bahrke M, Morgan W. Evaluation of the ergogenic properties of ginseng. Sports Med. 1994;18(4):229–48.CrossRefPubMed
24.
go back to reference Odani T, Ushio Y, Arichi S. The effect of ginsenosides on adrenocorticotropin secretion in primary culture of rat pituitary cells. Planta Med. 1986;3:177–9.CrossRefPubMed Odani T, Ushio Y, Arichi S. The effect of ginsenosides on adrenocorticotropin secretion in primary culture of rat pituitary cells. Planta Med. 1986;3:177–9.CrossRefPubMed
Metadata
Title
Null effect of ginsenoside Rb1 on improving glycemic status in men during a resistance training recovery
Authors
Wei-Hsiang Chang
Ying-Lan Tsai
Chih-Yang Huang
City C. Hsieh
Rungchai Chaunchaiyakul
Yu Fang
Shin-Da Lee
Chia-Hua Kuo
Publication date
01-12-2015
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-015-0095-6

Other articles of this Issue 1/2015

Journal of the International Society of Sports Nutrition 1/2015 Go to the issue