Skip to main content
Top
Published in: Current Osteoporosis Reports 3/2019

01-06-2019 | Skeletal Development (R Marcucio and J Feng, Section Editors)

Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease

Authors: Creighton T. Tuzon, Diana Rigueur, Amy E. Merrill

Published in: Current Osteoporosis Reports | Issue 3/2019

Login to get access

Abstract

Purpose of Review

Fibroblast growth factor receptor (FGFR) signaling regulates proliferation and differentiation during development and homeostasis. While membrane-bound FGFRs play a central role in these processes, the function of nuclear FGFRs is also critical. Here, we highlight mechanisms for nuclear FGFR translocation and the effects of nuclear FGFRs on skeletal development and disease.

Recent Findings

Full-length FGFRs, internalized by endocytosis, enter the nucleus through β-importin-dependent mechanisms that recognize the nuclear localization signal within FGFs. Alternatively, soluble FGFR intracellular fragments undergo nuclear translocation following their proteolytic release from the membrane. FGFRs enter the nucleus during the cellular transition between proliferation and differentiation. Once nuclear, FGFRs interact with chromatin remodelers to alter the epigenetic state and transcription of their target genes. Dysregulation of nuclear FGFR is linked to the etiology of congenital skeletal disorders and neoplastic transformation.

Summary

Revealing the activities of nuclear FGFR will advance our understanding of 20 congenital skeletal disorders caused by FGFR mutations, as well as FGFR-related cancers.
Literature
2.
go back to reference Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.PubMedCrossRef Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.PubMedCrossRef
3.
go back to reference Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446–65.PubMedCrossRef Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002;16(12):1446–65.PubMedCrossRef
4.
go back to reference Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development. 2000;127(9):1845–55.PubMed Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, et al. Integration of FGF and TWIST in calvarial bone and suture development. Development. 2000;127(9):1845–55.PubMed
5.
go back to reference Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.PubMedPubMedCentralCrossRef Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol. 2006;296(2):315–28.PubMedPubMedCentralCrossRef
6.
go back to reference Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.PubMed Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFR1 and FGFR3 tyrosine kinase domains. Development. 2001;128(19):3867–76.PubMed
7.
go back to reference Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135(3):483–91.PubMedCrossRef Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135(3):483–91.PubMedCrossRef
8.
go back to reference Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003;130(13):3063–74.PubMedCrossRef Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development. 2003;130(13):3063–74.PubMedCrossRef
9.
go back to reference Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.PubMedCrossRef Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.PubMedCrossRef
10.
go back to reference Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.PubMedCrossRef Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911–21.PubMedCrossRef
11.
go back to reference Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone. 2007;40(3):577–86.PubMedCrossRef Lazarus JE, Hegde A, Andrade AC, Nilsson O, Baron J. Fibroblast growth factor expression in the postnatal growth plate. Bone. 2007;40(3):577–86.PubMedCrossRef
12.
go back to reference Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64(4):841–8.PubMedCrossRef Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991;64(4):841–8.PubMedCrossRef
13.
go back to reference Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell. 2000;101(4):413–24.PubMedCrossRef Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell. 2000;101(4):413–24.PubMedCrossRef
14.
go back to reference Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–34.PubMedCrossRef Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–34.PubMedCrossRef
15.
go back to reference Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287(34):29134–46.PubMedPubMedCentralCrossRef Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287(34):29134–46.PubMedPubMedCentralCrossRef
16.
go back to reference •• Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66 This review provides a comprehensive assessment of the genetics and molecular biology of the FGF signaling pathway. PubMedPubMedCentralCrossRef •• Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66 This review provides a comprehensive assessment of the genetics and molecular biology of the FGF signaling pathway. PubMedPubMedCentralCrossRef
17.
go back to reference Myers JM, Martins GG, Ostrowski J, Stachowiak MK. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J Cell Biochem. 2003;88(6):1273–91.PubMedCrossRef Myers JM, Martins GG, Ostrowski J, Stachowiak MK. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J Cell Biochem. 2003;88(6):1273–91.PubMedCrossRef
18.
go back to reference Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–7.PubMedPubMedCentralCrossRef Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90(3):550–7.PubMedPubMedCentralCrossRef
19.
go back to reference Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 2006;281(37):27292–305.PubMedCrossRef Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 2006;281(37):27292–305.PubMedCrossRef
20.
go back to reference Maher PA. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol. 1996;134(2):529–36.PubMedCrossRef Maher PA. Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol. 1996;134(2):529–36.PubMedCrossRef
21.
go back to reference Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK. Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res. 1996;38(1):161–5.PubMedCrossRef Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK. Nuclear localization of functional FGF receptor 1 in human astrocytes suggests a novel mechanism for growth factor action. Brain Res Mol Brain Res. 1996;38(1):161–5.PubMedCrossRef
22.
go back to reference Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol. 2001;152(6):1307–12.PubMedPubMedCentralCrossRef Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol. 2001;152(6):1307–12.PubMedPubMedCentralCrossRef
24.
go back to reference • Mikolajczak M, Goodman T, Hajihosseini MK. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J. 2016;473(24):4593–607 Numerous mutations within FGFRs are causative for skeletal defects. This manuscript however identified mutations within the FGF10 ligand that fail to properly localize to the nucleus.PubMedCrossRef • Mikolajczak M, Goodman T, Hajihosseini MK. Interrogation of a lacrimo-auriculo-dento-digital syndrome protein reveals novel modes of fibroblast growth factor 10 (FGF10) function. Biochem J. 2016;473(24):4593–607 Numerous mutations within FGFRs are causative for skeletal defects. This manuscript however identified mutations within the FGF10 ligand that fail to properly localize to the nucleus.PubMedCrossRef
25.
go back to reference Wesche J, Małecki J̧, Wiȩdłocha A, Ehsani M, Marcinkowska E, Nilsen T, et al. Two nuclear localization signals required for transport from the cytosol to the nucleus of externally added FGF-1 translocated into cells. Biochemistry. 2005;44(16):6071–80.PubMedCrossRef Wesche J, Małecki J̧, Wiȩdłocha A, Ehsani M, Marcinkowska E, Nilsen T, et al. Two nuclear localization signals required for transport from the cytosol to the nucleus of externally added FGF-1 translocated into cells. Biochemistry. 2005;44(16):6071–80.PubMedCrossRef
26.
go back to reference Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell. 1999;10(5):1429–44.PubMedPubMedCentralCrossRef Arese M, Chen Y, Florkiewicz RZ, Gualandris A, Shen B, Rifkin DB. Nuclear activities of basic fibroblast growth factor: potentiation of low-serum growth mediated by natural or chimeric nuclear localization signals. Mol Biol Cell. 1999;10(5):1429–44.PubMedPubMedCentralCrossRef
27.
go back to reference Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19(1):505–14.PubMedPubMedCentralCrossRef Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, et al. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol. 1999;19(1):505–14.PubMedPubMedCentralCrossRef
28.
go back to reference Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32(3):263–7.PubMedCrossRef Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol. 2000;32(3):263–7.PubMedCrossRef
29.
go back to reference Sorensen V, Nilsen T, Wiedlocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays. 2006;28(5):504–14.PubMedCrossRef Sorensen V, Nilsen T, Wiedlocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays. 2006;28(5):504–14.PubMedCrossRef
30.
go back to reference Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol. 2005;25(21):9419–26.PubMedPubMedCentralCrossRef Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol. 2005;25(21):9419–26.PubMedPubMedCentralCrossRef
31.
go back to reference Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell. 2005;16(1):14–23.PubMedPubMedCentralCrossRef Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell. 2005;16(1):14–23.PubMedPubMedCentralCrossRef
32.
go back to reference Citores L, Khnykin D, Sørensen V, Wesche J, Klingenberg O, Wiedłocha A, et al. Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci. 2001;114(Pt 9):1677–89.PubMed Citores L, Khnykin D, Sørensen V, Wesche J, Klingenberg O, Wiedłocha A, et al. Modulation of intracellular transport of acidic fibroblast growth factor by mutations in the cytoplasmic receptor domain. J Cell Sci. 2001;114(Pt 9):1677–89.PubMed
33.
go back to reference Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013;126(Pt 2):613–24.PubMedPubMedCentralCrossRef Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013;126(Pt 2):613–24.PubMedPubMedCentralCrossRef
34.
go back to reference Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S, Sandvig K, et al. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling. PLoS One. 2011;6(7):e21708.PubMedPubMedCentralCrossRef Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S, Sandvig K, et al. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling. PLoS One. 2011;6(7):e21708.PubMedPubMedCentralCrossRef
35.
go back to reference Reilly JF, Mizukoshi E, Maher PA. Ligand dependent and independent internalization and nuclear translocation of fibroblast growth factor (FGF) receptor 1. DNA Cell Biol. 2004;23(9):538–48.PubMedCrossRef Reilly JF, Mizukoshi E, Maher PA. Ligand dependent and independent internalization and nuclear translocation of fibroblast growth factor (FGF) receptor 1. DNA Cell Biol. 2004;23(9):538–48.PubMedCrossRef
36.
go back to reference Malecki J, et al. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1. EMBO J. 2002;21(17):4480–90.PubMedPubMedCentralCrossRef Malecki J, et al. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1. EMBO J. 2002;21(17):4480–90.PubMedPubMedCentralCrossRef
37.
go back to reference Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.PubMedPubMedCentral Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141(9):2772–94.PubMedPubMedCentral
38.
go back to reference •• Stehbens SJ, et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci. 2018;131(15). In endometrial cancer, activating somatic mutations in FGFR2 induce Golgi fragmentation, lose cell polarity, and migrate cells aberrantly. These outcomes are prognostic for endometrial cancer and correlate with shorter survival. •• Stehbens SJ, et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J Cell Sci. 2018;131(15). In endometrial cancer, activating somatic mutations in FGFR2 induce Golgi fragmentation, lose cell polarity, and migrate cells aberrantly. These outcomes are prognostic for endometrial cancer and correlate with shorter survival.
39.
go back to reference Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, et al. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol. 2013;139(1):135–48.PubMedCrossRef Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, et al. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol. 2013;139(1):135–48.PubMedCrossRef
40.
go back to reference Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, et al. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Hum Mol Genet. 2014;23(21):5659–71.PubMedPubMedCentralCrossRef Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, et al. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Hum Mol Genet. 2014;23(21):5659–71.PubMedPubMedCentralCrossRef
41.
go back to reference Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell. 2011;22(20):3861–73.PubMedPubMedCentralCrossRef Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell. 2011;22(20):3861–73.PubMedPubMedCentralCrossRef
42.
go back to reference Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res. 2016;6(4):827–42.PubMedPubMedCentral Chen MK, Hung MC. Regulation of therapeutic resistance in cancers by receptor tyrosine kinases. Am J Cancer Res. 2016;6(4):827–42.PubMedPubMedCentral
44.
go back to reference • Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, et al. Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS One. 2015;10(4):e0123380 Using genome-wide sequencing, the study revealed a mechanism for gene regulation of nuclear FGFR1 to ensure that pluripotent ESCs differentiate into neuronal cells. PubMedPubMedCentralCrossRef • Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, et al. Global developmental gene programing involves a nuclear form of fibroblast growth factor receptor-1 (FGFR1). PLoS One. 2015;10(4):e0123380 Using genome-wide sequencing, the study revealed a mechanism for gene regulation of nuclear FGFR1 to ensure that pluripotent ESCs differentiate into neuronal cells. PubMedPubMedCentralCrossRef
45.
go back to reference Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A. 2005;102(28):9896–900.PubMedPubMedCentralCrossRef Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A. 2005;102(28):9896–900.PubMedPubMedCentralCrossRef
46.
go back to reference •• Neben CL, et al. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet. 2017;26(17):3253–70 This study linked cell fate determination to disease pathology by characterizing FGFR2 mutations in BBDS and established rDNA as an FGFR2-regulated loci that balances self-renewal and cell fate determination. PubMedPubMedCentralCrossRef •• Neben CL, et al. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet. 2017;26(17):3253–70 This study linked cell fate determination to disease pathology by characterizing FGFR2 mutations in BBDS and established rDNA as an FGFR2-regulated loci that balances self-renewal and cell fate determination. PubMedPubMedCentralCrossRef
47.
go back to reference Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene. 2017;612:29–35.PubMedCrossRef Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene. 2017;612:29–35.PubMedCrossRef
48.
go back to reference Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16(2):233–47.PubMedCrossRef Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 2005;16(2):233–47.PubMedCrossRef
49.
go back to reference Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem. 2003;90(4):662–91.PubMedCrossRef Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem. 2003;90(4):662–91.PubMedCrossRef
50.
go back to reference Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem. 2002;80(1):54–63.PubMedCrossRef Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem. 2002;80(1):54–63.PubMedCrossRef
51.
go back to reference Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. FGF9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627–36.PubMedCrossRef Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. FGF9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627–36.PubMedCrossRef
52.
go back to reference Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104(42):16558–63.PubMedPubMedCentralCrossRef Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A. 2007;104(42):16558–63.PubMedPubMedCentralCrossRef
53.
go back to reference Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132(6):1223–34.PubMedCrossRef Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132(6):1223–34.PubMedCrossRef
54.
go back to reference Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87.PubMedPubMedCentralCrossRef Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87.PubMedPubMedCentralCrossRef
55.
go back to reference Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.PubMed Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.PubMed
56.
go back to reference De Moerlooze L, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.PubMed De Moerlooze L, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127(3):483–92.PubMed
57.
go back to reference Krakow D, Cohn DH, Wilcox WR, Noh GJ, Raffel LJ, Sarukhanov A, et al. Clinical and radiographic delineation of bent bone dysplasia-FGFR2 type or bent bone dysplasia with distinctive clavicles and angel-shaped phalanges. Am J Med Genet A. 2016;170(10):2652–61.PubMedPubMedCentralCrossRef Krakow D, Cohn DH, Wilcox WR, Noh GJ, Raffel LJ, Sarukhanov A, et al. Clinical and radiographic delineation of bent bone dysplasia-FGFR2 type or bent bone dysplasia with distinctive clavicles and angel-shaped phalanges. Am J Med Genet A. 2016;170(10):2652–61.PubMedPubMedCentralCrossRef
58.
go back to reference Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn. 2019;248:233–46.PubMedCrossRefPubMedCentral Salva JE, Roberts RR, Stucky TS, Merrill AE. Nuclear FGFR2 regulates musculoskeletal integration within the developing limb. Dev Dyn. 2019;248:233–46.PubMedCrossRefPubMedCentral
59.
go back to reference Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.PubMedCrossRef Anderson J, Burns HD, Enriquez-Harris P, Wilkie AO, Heath JK. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet. 1998;7(9):1475–83.PubMedCrossRef
60.
go back to reference Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet. 2004;13(19):2313–24.PubMedCrossRef Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet. 2004;13(19):2313–24.PubMedCrossRef
61.
go back to reference Robertson SC, Meyer AN, Hart KC, Galvin BD, Webster MK, Donoghue DJ. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc Natl Acad Sci U S A. 1998;95(8):4567–72.PubMedPubMedCentralCrossRef Robertson SC, Meyer AN, Hart KC, Galvin BD, Webster MK, Donoghue DJ. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc Natl Acad Sci U S A. 1998;95(8):4567–72.PubMedPubMedCentralCrossRef
62.
go back to reference Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med. 2014;6(4):467–81.PubMedPubMedCentralCrossRef Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, et al. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med. 2014;6(4):467–81.PubMedPubMedCentralCrossRef
63.
go back to reference Pollock PM, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.PubMedPubMedCentralCrossRef Pollock PM, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007;26(50):7158–62.PubMedPubMedCentralCrossRef
64.
go back to reference Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10.PubMedCrossRef Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10.PubMedCrossRef
65.
go back to reference Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes. 2011;4:72.PubMedPubMedCentralCrossRef Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes. 2011;4:72.PubMedPubMedCentralCrossRef
66.
go back to reference Cerliani JP, Vanzulli SI, Piñero CP, Bottino MC, Sahores A, Nuñez M, et al. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat. 2012;133(3):997–1008.PubMedCrossRef Cerliani JP, Vanzulli SI, Piñero CP, Bottino MC, Sahores A, Nuñez M, et al. Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat. 2012;133(3):997–1008.PubMedCrossRef
67.
go back to reference Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, et al. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol. 2012;105(8):773–9.PubMedCrossRef Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, et al. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol. 2012;105(8):773–9.PubMedCrossRef
68.
go back to reference • May M, Mosto J, Vazquez PM, Gonzalez P, Rojas P, Gass H, et al. Nuclear staining of FGFR-2/STAT-5 and RUNX-2 in mucinous breast cancer. Exp Mol Pathol. 2016;100(1):39–44 Mucinous breast carcinoma (MBC) is a rare subtype of breast cancer. When compared to non-MBC, higher expression of nuclear FGFR2 and RUNX2 was observed in MBC suggesting a role for these proteins in the progression of the mucinous phenotype. PubMedCrossRef • May M, Mosto J, Vazquez PM, Gonzalez P, Rojas P, Gass H, et al. Nuclear staining of FGFR-2/STAT-5 and RUNX-2 in mucinous breast cancer. Exp Mol Pathol. 2016;100(1):39–44 Mucinous breast carcinoma (MBC) is a rare subtype of breast cancer. When compared to non-MBC, higher expression of nuclear FGFR2 and RUNX2 was observed in MBC suggesting a role for these proteins in the progression of the mucinous phenotype. PubMedCrossRef
69.
go back to reference Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, et al. Altered intracellular localization of fibroblast growth factor receptor 3 in human breast cancer. J Pathol. 2001;194(1):27–34.PubMedCrossRef Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, et al. Altered intracellular localization of fibroblast growth factor receptor 3 in human breast cancer. J Pathol. 2001;194(1):27–34.PubMedCrossRef
70.
go back to reference Rotterud R, Fossa SD, Nesland JM. Protein networking in bladder cancer: immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol Histopathol. 2007;22(4):349–63.PubMed Rotterud R, Fossa SD, Nesland JM. Protein networking in bladder cancer: immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol Histopathol. 2007;22(4):349–63.PubMed
71.
go back to reference • Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, et al. Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. Int J Clin Exp Pathol. 2015;8(11):14640–8 This study suggests that the nuclear translocation of FGFR3 not only is frequent but also prognostic for pancreatic cancer. PubMedPubMedCentral • Zhou L, Yao LT, Liang ZY, Zhou WX, You L, Shao QQ, et al. Nuclear translocation of fibroblast growth factor receptor 3 and its significance in pancreatic cancer. Int J Clin Exp Pathol. 2015;8(11):14640–8 This study suggests that the nuclear translocation of FGFR3 not only is frequent but also prognostic for pancreatic cancer. PubMedPubMedCentral
Metadata
Title
Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease
Authors
Creighton T. Tuzon
Diana Rigueur
Amy E. Merrill
Publication date
01-06-2019
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 3/2019
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-019-00512-2

Other articles of this Issue 3/2019

Current Osteoporosis Reports 3/2019 Go to the issue

Bone and Diabetes (A Schwartz and P Vestergaard, section editors)

Falls and Fractures in Diabetes—More than Bone Fragility

Cancer-induced Musculoskeletal Diseases (E Keller and J Sterling, Section editors)

MicroRNAs in Bone Metastasis

Osteocytes (J Klein Nulend, Section editor)

Pro-inflammatory Cytokines and Osteocytes

Skeletal Development (R Marcucio and J Feng, Section Editors)

A Second Career for Chondrocytes—Transformation into Osteoblasts