Skip to main content
Top
Published in: Molecular Cancer 1/2019

Open Access 01-12-2019 | NSCLC | Review

Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations

Authors: Anqi Lin, Ting Wei, Hui Meng, Peng Luo, Jian Zhang

Published in: Molecular Cancer | Issue 1/2019

Login to get access

Abstract

Immunotherapy has been incorporated into the first- and second-line treatment strategies for non-small cell lung cancer (NSCLC), profoundly ushering in a new treatment landscape. However, both adaptive signaling and oncogenic (epidermal growth factor receptor (EGFR)-driven) signaling may induce PD-L1 upregulation in NSCLC. Nevertheless, the superiority of immune checkpoint inhibitors (ICIs) in advanced EGFR-mutant NSCLC is only moderate. ICIs appear to be well tolerated, but clinical activity for some advanced EGFR-mutant NSCLC patients has only been observed in a small proportion of trials. Hence, there are still several open questions about PD-L1 axis inhibitors in patients with NSCLC whose tumors harbor EGFR mutations, such as the effect of EGFR tyrosine kinase inhibitors (TKIs) or EGFR mutations in the tumor microenvironment (TME). Finding the answers to these questions requires ongoing trials and preclinical studies to identify the mechanisms explaining this possible increased susceptibility and to identify prognostic molecular and clinical markers that may predict benefits with PD-1 axis inhibition in this specific NSCLC subpopulation. The presence of multiple mechanisms, including dynamic immune TME profiles, changes in PD-L1 expression and low tumor mutational burdens, may explain the conflicting data regarding the correlation between PD-L1 axis inhibitors and EGFR mutation status. We conducted a review of this currently controversial topic in an attempt to aid in the decision-making process.
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.PubMedCrossRef
2.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.PubMedCrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.PubMedCrossRef
3.
go back to reference Torre LA, Siegel RL, Jemal A. Lung cancer statistics. In Lung cancer and personalized medicine. Cham: Springer; 2016. p. 1–19.CrossRef Torre LA, Siegel RL, Jemal A. Lung cancer statistics. In Lung cancer and personalized medicine. Cham: Springer; 2016. p. 1–19.CrossRef
4.
go back to reference Taylor MD, LaPar DJ, Isbell JM, Kozower BD, Lau CL, Jones DR. Marginal pulmonary function should not preclude lobectomy in selected patients with non–small cell lung cancer. J Thorac Cardiovasc Surg. 2014;147:738–46.PubMedCrossRef Taylor MD, LaPar DJ, Isbell JM, Kozower BD, Lau CL, Jones DR. Marginal pulmonary function should not preclude lobectomy in selected patients with non–small cell lung cancer. J Thorac Cardiovasc Surg. 2014;147:738–46.PubMedCrossRef
5.
6.
go back to reference Remon J, Hendriks LE, Cabrera C, Reguart N, Besse B. Immunotherapy for oncogenic-driven advanced non-small cell lung cancers:is the time ripe for a change? Cancer Treat Rev. 2018;15:47–58.CrossRef Remon J, Hendriks LE, Cabrera C, Reguart N, Besse B. Immunotherapy for oncogenic-driven advanced non-small cell lung cancers:is the time ripe for a change? Cancer Treat Rev. 2018;15:47–58.CrossRef
7.
go back to reference Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, Giaccone G, Hesketh PJ, Jaiyesimi I, Leighl NB, Riely GJ. Systemic therapy for stage IV non-small-cell lung cancer:American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35:3484–515.PubMedCrossRef Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, Giaccone G, Hesketh PJ, Jaiyesimi I, Leighl NB, Riely GJ. Systemic therapy for stage IV non-small-cell lung cancer:American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35:3484–515.PubMedCrossRef
8.
go back to reference Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D’Amico TA, Dilling TJ, Dobelbower MC. NCCN guidelines insights:non–small cell lung cancer, version 4.2016. J Natl Compr Canc Netw. 2016;14:255–64.PubMedCrossRef Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D’Amico TA, Dilling TJ, Dobelbower MC. NCCN guidelines insights:non–small cell lung cancer, version 4.2016. J Natl Compr Canc Netw. 2016;14:255–64.PubMedCrossRef
9.
go back to reference Wu YL, Saijo N, Thongprasert S, Yang JH, Han B, Margono B, Chewaskulyong B, Sunpaweravong P, Ohe Y, Ichinose Y, Yang JJ. Efficacy according to blind independent central review:post-hoc analyses from the phase III, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC. Lung Cancer. 2017;104:119–25.PubMedCrossRef Wu YL, Saijo N, Thongprasert S, Yang JH, Han B, Margono B, Chewaskulyong B, Sunpaweravong P, Ohe Y, Ichinose Y, Yang JJ. Efficacy according to blind independent central review:post-hoc analyses from the phase III, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC. Lung Cancer. 2017;104:119–25.PubMedCrossRef
10.
11.
go back to reference Helena AY, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.CrossRef Helena AY, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.CrossRef
12.
go back to reference Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med. 2017;376:629–40.PubMedCrossRef Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, Lee CK. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N Engl J Med. 2017;376:629–40.PubMedCrossRef
13.
14.
go back to reference Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non–small cell lung carcinoma:a systematic review and meta-analysis. JAMA Oncol. 2018;4:210–6.PubMedCrossRef Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T, Yang JC. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non–small cell lung carcinoma:a systematic review and meta-analysis. JAMA Oncol. 2018;4:210–6.PubMedCrossRef
15.
go back to reference Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373:123–35.PubMedPubMedCentralCrossRef Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373:123–35.PubMedPubMedCentralCrossRef
16.
go back to reference Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373:1627–39.PubMedPubMedCentralCrossRef Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373:1627–39.PubMedPubMedCentralCrossRef
17.
go back to reference Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010):a randomised controlled trial. Lancet. 2016;387:1540–50.PubMedCrossRef Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010):a randomised controlled trial. Lancet. 2016;387:1540–50.PubMedCrossRef
18.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK):a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.PubMedCrossRef Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK):a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.PubMedCrossRef
19.
go back to reference Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR):a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.PubMedCrossRef Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR):a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.PubMedCrossRef
20.
go back to reference Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375:1823–33.PubMedCrossRef Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375:1823–33.PubMedCrossRef
21.
go back to reference Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. N Engl J Med. 2017;376:2415–26.PubMedPubMedCentralCrossRef Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, Ready N. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. N Engl J Med. 2017;376:2415–26.PubMedPubMedCentralCrossRef
22.
go back to reference Bianco A, Malapelle U, Rocco D, Perrotta F, Mazzarella G. Targeting immune checkpoints in non small cell lung cancer. Curr Opin Pharmacol. 2018;40:46–50.PubMedCrossRef Bianco A, Malapelle U, Rocco D, Perrotta F, Mazzarella G. Targeting immune checkpoints in non small cell lung cancer. Curr Opin Pharmacol. 2018;40:46–50.PubMedCrossRef
23.
go back to reference William WN Jr, Lin HY, Lee JJ, Lippman SM, Roth JA, Kim ES. Revisiting stage IIIB and IV non-small cell lung cancer:analysis of the surveillance, epidemiology, and end results data. Chest. 2009;136:701–9.PubMedCrossRef William WN Jr, Lin HY, Lee JJ, Lippman SM, Roth JA, Kim ES. Revisiting stage IIIB and IV non-small cell lung cancer:analysis of the surveillance, epidemiology, and end results data. Chest. 2009;136:701–9.PubMedCrossRef
24.
25.
go back to reference Soo RA, Lim SM, Syn NL, Teng R, Soong R, Mok TS, Cho BC. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer:current controversies and future directions. Lung Cancer. 2018;115:12–20.PubMedCrossRef Soo RA, Lim SM, Syn NL, Teng R, Soong R, Mok TS, Cho BC. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer:current controversies and future directions. Lung Cancer. 2018;115:12–20.PubMedCrossRef
26.
go back to reference Li X, Lian Z, Wang S, Xing L, Yu J. Interactions between EGFR and PD-1/PD-L1 pathway:implications for treatment of NSCLC. Cancer Lett. 2018;418:1–9.PubMedCrossRef Li X, Lian Z, Wang S, Xing L, Yu J. Interactions between EGFR and PD-1/PD-L1 pathway:implications for treatment of NSCLC. Cancer Lett. 2018;418:1–9.PubMedCrossRef
27.
go back to reference Yang JC, Shepherd FA, Kim DW, Lee GW, Lee JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, Collins B. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR-TKI therapy:CAURAL brief report. J Thorac Oncol. 2019;14(5):933–9.CrossRefPubMed Yang JC, Shepherd FA, Kim DW, Lee GW, Lee JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, Collins B. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR-TKI therapy:CAURAL brief report. J Thorac Oncol. 2019;14(5):933–9.CrossRefPubMed
28.
go back to reference Yang JC, Gadgeel SM, Sequist LV, Wu CL, Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H, Patnaik A. Pembrolizumab in combination with Erlotinib or Gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol. 2019;14:553–9.PubMedCrossRef Yang JC, Gadgeel SM, Sequist LV, Wu CL, Papadimitrakopoulou VA, Su WC, Fiore J, Saraf S, Raftopoulos H, Patnaik A. Pembrolizumab in combination with Erlotinib or Gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol. 2019;14:553–9.PubMedCrossRef
29.
go back to reference Yi L, Fan J, Qian R, Luo P, Zhang J. Efficacy and safety of osimertinib in treating EGFR-mutated advanced NSCLC:a meta-analysis. Int J Cancer. 2019;145(1):284–94.PubMedPubMedCentralCrossRef Yi L, Fan J, Qian R, Luo P, Zhang J. Efficacy and safety of osimertinib in treating EGFR-mutated advanced NSCLC:a meta-analysis. Int J Cancer. 2019;145(1):284–94.PubMedPubMedCentralCrossRef
30.
go back to reference Antonia SJ, Brahmer JR, Gettinger S, Chow LQ, Juergens R, Shepherd FA, Laurie SA, Gerber DE, Goldman J, Shen Y, Harbison C. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) in advanced non-small cell lung cancer (NSCLC):metastatic non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90:S2.CrossRef Antonia SJ, Brahmer JR, Gettinger S, Chow LQ, Juergens R, Shepherd FA, Laurie SA, Gerber DE, Goldman J, Shen Y, Harbison C. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) in advanced non-small cell lung cancer (NSCLC):metastatic non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90:S2.CrossRef
31.
go back to reference Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL. Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science. 2017;355:1423–7.PubMedPubMedCentralCrossRef Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL. Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science. 2017;355:1423–7.PubMedPubMedCentralCrossRef
32.
go back to reference Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, Shuai Y. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell. 2017;169:1130–41.PubMedPubMedCentralCrossRef Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, Shuai Y. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell. 2017;169:1130–41.PubMedPubMedCentralCrossRef
33.
go back to reference Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, Takeda S. LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 2018;172:825–40.PubMedPubMedCentralCrossRef Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, Takeda S. LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 2018;172:825–40.PubMedPubMedCentralCrossRef
34.
go back to reference Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, Schadendorf D. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res. 2015;21:5453–9.PubMedCrossRef Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, Schadendorf D. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin Cancer Res. 2015;21:5453–9.PubMedCrossRef
35.
go back to reference De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature. 2016;539:443.PubMedPubMedCentralCrossRef De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, Douglas M. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature. 2016;539:443.PubMedPubMedCentralCrossRef
36.
go back to reference Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, Schmid MC. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437.PubMedPubMedCentralCrossRef Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, Schmid MC. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437.PubMedPubMedCentralCrossRef
37.
go back to reference Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348:124–8.PubMedPubMedCentralCrossRef Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348:124–8.PubMedPubMedCentralCrossRef
39.
go back to reference McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.PubMedPubMedCentralCrossRef McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, Watkins TB. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.PubMedPubMedCentralCrossRef
40.
go back to reference Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, Williams LJ. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6:202–16.PubMedCrossRef Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, Williams LJ. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov. 2016;6:202–16.PubMedCrossRef
41.
go back to reference Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, Howe E. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non–small cell lung cancer:a retrospective analysis. Clin Cancer Res. 2016;22:4585–93.PubMedPubMedCentralCrossRef Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, Howe E. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non–small cell lung cancer:a retrospective analysis. Clin Cancer Res. 2016;22:4585–93.PubMedPubMedCentralCrossRef
43.
go back to reference Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, Zhou Q, Tu HY, Xu CR, Yan LX, Li YF. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology. 2017;6:e1356145.PubMedPubMedCentralCrossRef Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, Zhou Q, Tu HY, Xu CR, Yan LX, Li YF. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology. 2017;6:e1356145.PubMedPubMedCentralCrossRef
44.
go back to reference Li HY, McSharry M, Bullock B, Nguyen TT, Kwak J, Poczobutt JM, Sippel TR, Heasley LE, Weiser-Evans MC, Clambey ET, Nemenoff RA. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer Immunol Res. 2017;5:767–77.PubMedPubMedCentralCrossRef Li HY, McSharry M, Bullock B, Nguyen TT, Kwak J, Poczobutt JM, Sippel TR, Heasley LE, Weiser-Evans MC, Clambey ET, Nemenoff RA. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer Immunol Res. 2017;5:767–77.PubMedPubMedCentralCrossRef
45.
go back to reference Mascia F, Schloemann DT, Cataisson C, McKinnon KM, Krymskaya L, Wolcott KM, Yuspa SH. Cell autonomous or systemic EGFR blockade alters the immune-environment in squamous cell carcinomas. Int J Cancer. 2016;139:2593–7.PubMedPubMedCentralCrossRef Mascia F, Schloemann DT, Cataisson C, McKinnon KM, Krymskaya L, Wolcott KM, Yuspa SH. Cell autonomous or systemic EGFR blockade alters the immune-environment in squamous cell carcinomas. Int J Cancer. 2016;139:2593–7.PubMedPubMedCentralCrossRef
46.
go back to reference Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, Gleaves LA. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology. 2016;5:e1168549.PubMedPubMedCentralCrossRef Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, Gleaves LA. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology. 2016;5:e1168549.PubMedPubMedCentralCrossRef
47.
go back to reference Jia Y, Li X, Jiang T, Zhao S, Zhao C, Zhang L, Liu X, Shi J, Qiao M, Luo J, Liu S. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies. Int J Cancer. 2019;145(5):1432–44.PubMed Jia Y, Li X, Jiang T, Zhao S, Zhao C, Zhang L, Liu X, Shi J, Qiao M, Luo J, Liu S. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies. Int J Cancer. 2019;145(5):1432–44.PubMed
50.
go back to reference Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, Wilkerson MD. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.PubMedCrossRef Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, Wilkerson MD. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.PubMedCrossRef
51.
go back to reference Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, Hoshino T. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 2014;25:1935–40.PubMedCrossRef Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, Hoshino T. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 2014;25:1935–40.PubMedCrossRef
52.
go back to reference Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y, Chen H. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther. 2014;7:567.PubMedPubMedCentralCrossRef Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y, Chen H. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther. 2014;7:567.PubMedPubMedCentralCrossRef
53.
go back to reference Yang CY, Lin MW, Chang YL, Wu CT, Yang PC. Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer. 2014;50:1361–9.PubMedCrossRef Yang CY, Lin MW, Chang YL, Wu CT, Yang PC. Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer. 2014;50:1361–9.PubMedCrossRef
54.
go back to reference Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 2019;4:1. Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 2019;4:1.
55.
57.
go back to reference Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRef Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting:integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRef
58.
59.
go back to reference Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48.PubMedCrossRef Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48.PubMedCrossRef
60.
go back to reference Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6.PubMedCrossRef Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6.PubMedCrossRef
61.
go back to reference Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. In: Advances in Nutrition and Cancer. Berlin, Heidelberg: Springer; 2014. p. 401–26.CrossRef Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. In: Advances in Nutrition and Cancer. Berlin, Heidelberg: Springer; 2014. p. 401–26.CrossRef
62.
63.
go back to reference Noonan DM, Barbaro AD, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis:decisions and indecisions. Cancer Metastasis Rev. 2008;27:31–40.PubMedCrossRef Noonan DM, Barbaro AD, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis:decisions and indecisions. Cancer Metastasis Rev. 2008;27:31–40.PubMedCrossRef
64.
go back to reference Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs:tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst. 2014;106:1–3.CrossRef Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs:tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst. 2014;106:1–3.CrossRef
65.
go back to reference Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso B, Mangiaracina C, Vilella R. Low PD-1 expression in cytotoxic CD8+ tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin Cancer Res. 2018;24:407–19.PubMedCrossRef Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso B, Mangiaracina C, Vilella R. Low PD-1 expression in cytotoxic CD8+ tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin Cancer Res. 2018;24:407–19.PubMedCrossRef
66.
go back to reference Huang SH, Li Y, Zhang J, Rong J, Ye S. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Investig. 2013;31:330–5.CrossRef Huang SH, Li Y, Zhang J, Rong J, Ye S. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Investig. 2013;31:330–5.CrossRef
67.
go back to reference Zhang B, Zhang Y, Zhao J, Wang Z, Wu T, Ou W, Wang J, Yang B, Zhao Y, Rao Z, Gao J. M2-polarized macrophages contribute to the decreased sensitivity of EGFR-TKIs treatment in patients with advanced lung adenocarcinoma. Med Oncol. 2014;31:127.PubMedCrossRef Zhang B, Zhang Y, Zhao J, Wang Z, Wu T, Ou W, Wang J, Yang B, Zhao Y, Rao Z, Gao J. M2-polarized macrophages contribute to the decreased sensitivity of EGFR-TKIs treatment in patients with advanced lung adenocarcinoma. Med Oncol. 2014;31:127.PubMedCrossRef
68.
go back to reference Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Suppression of Exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177:414–27.PubMedPubMedCentralCrossRef Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Suppression of Exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177:414–27.PubMedPubMedCentralCrossRef
69.
go back to reference Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.PubMedCrossRef Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.PubMedCrossRef
70.
go back to reference Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4:330.PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4:330.PubMedCrossRef
71.
go back to reference Frydrychowicz M, Boruczkowski M, Kolecka-Bednarczyk A, Dworacki G. The dual role of Treg in cancer. Scand J Immunol. 2017;86:436–43.PubMedCrossRef Frydrychowicz M, Boruczkowski M, Kolecka-Bednarczyk A, Dworacki G. The dual role of Treg in cancer. Scand J Immunol. 2017;86:436–43.PubMedCrossRef
72.
go back to reference Chin AR, Wang SE. Cancer-derived extracellular vesicles:the ‘soil conditioner’in breast cancer metastasis? Cancer Metastasis Rev. 2016;35:669–76.PubMedPubMedCentralCrossRef Chin AR, Wang SE. Cancer-derived extracellular vesicles:the ‘soil conditioner’in breast cancer metastasis? Cancer Metastasis Rev. 2016;35:669–76.PubMedPubMedCentralCrossRef
74.
go back to reference Syn N, Wang L, Sethi G, Thiery JP, Goh BC. Exosome-mediated metastasis:from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37:606–17.PubMedCrossRef Syn N, Wang L, Sethi G, Thiery JP, Goh BC. Exosome-mediated metastasis:from epithelial–mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37:606–17.PubMedCrossRef
75.
go back to reference Fallarino F, Grohmann U, Puccetti P. Indoleamine 2, 3-dioxygenase:from catalyst to signaling function. Eur J Immunol. 2012;42:1932–7.PubMedCrossRef Fallarino F, Grohmann U, Puccetti P. Indoleamine 2, 3-dioxygenase:from catalyst to signaling function. Eur J Immunol. 2012;42:1932–7.PubMedCrossRef
76.
go back to reference Ino K. Indoleamine 2, 3-dioxygenase and immune tolerance in ovarian cancer. Curr Opin Obstet Gynecol. 2011;23:13–8.PubMedCrossRef Ino K. Indoleamine 2, 3-dioxygenase and immune tolerance in ovarian cancer. Curr Opin Obstet Gynecol. 2011;23:13–8.PubMedCrossRef
77.
go back to reference Chang MH, Ahn HK, Lee J, Jung CK, Choi YL, Park YH, Ahn JS, Park K, Ahn MJ. Clinical impact of amphiregulin expression in patients with epidermal growth factor receptor (EGFR) wild-type nonsmall cell lung cancer treated with EGFR-tyrosine kinase inhibitors. Cancer. 2011;117:143–51.PubMedCrossRef Chang MH, Ahn HK, Lee J, Jung CK, Choi YL, Park YH, Ahn JS, Park K, Ahn MJ. Clinical impact of amphiregulin expression in patients with epidermal growth factor receptor (EGFR) wild-type nonsmall cell lung cancer treated with EGFR-tyrosine kinase inhibitors. Cancer. 2011;117:143–51.PubMedCrossRef
78.
go back to reference Higginbotham JN, Beckler MD, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ. Amphiregulin exosomes increase cancer cell invasion. Curr Biol. 2011;21:779–86.PubMedPubMedCentralCrossRef Higginbotham JN, Beckler MD, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ. Amphiregulin exosomes increase cancer cell invasion. Curr Biol. 2011;21:779–86.PubMedPubMedCentralCrossRef
79.
go back to reference Wang S, Zhang Y, Wang Y, Ye P, Li J, Li H, Ding Q, Xia J. Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3β/Foxp3 axis. J Biol Chem. 2016;291:21085–95.PubMedPubMedCentralCrossRef Wang S, Zhang Y, Wang Y, Ye P, Li J, Li H, Ding Q, Xia J. Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3β/Foxp3 axis. J Biol Chem. 2016;291:21085–95.PubMedPubMedCentralCrossRef
80.
go back to reference Yi T, Lee HL, Cha JH, Ko SI, Kim HJ, Shin HI, Woo KM, Ryoo HM, Kim GS, Baek JH. Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross-talking with RANK signaling. J Cell Physiol. 2008;217:409–22.PubMedCrossRef Yi T, Lee HL, Cha JH, Ko SI, Kim HJ, Shin HI, Woo KM, Ryoo HM, Kim GS, Baek JH. Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross-talking with RANK signaling. J Cell Physiol. 2008;217:409–22.PubMedCrossRef
81.
go back to reference Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Pénault-Llorca F, Perez EA. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer:recommendations by an international TILs working group 2014. Ann Oncol. 2014;26:259–71.PubMedPubMedCentralCrossRef Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Pénault-Llorca F, Perez EA. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer:recommendations by an international TILs working group 2014. Ann Oncol. 2014;26:259–71.PubMedPubMedCentralCrossRef
82.
go back to reference Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG. Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst. 2016;22(11):108.PubMedCentralCrossRef Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG. Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst. 2016;22(11):108.PubMedCentralCrossRef
83.
go back to reference Brambilla E, Le Teuff G, Marguet S, Lantuejoul S, Dunant A, Graziano S, Pirker R, Douillard JY, Le Chevalier T, Filipits M, Rosell R. Prognostic effect of tumor lymphocytic infiltration in resectable non–small-cell lung cancer. J Clin Oncol. 2016;34:1223.PubMedPubMedCentralCrossRef Brambilla E, Le Teuff G, Marguet S, Lantuejoul S, Dunant A, Graziano S, Pirker R, Douillard JY, Le Chevalier T, Filipits M, Rosell R. Prognostic effect of tumor lymphocytic infiltration in resectable non–small-cell lung cancer. J Clin Oncol. 2016;34:1223.PubMedPubMedCentralCrossRef
84.
go back to reference Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KW, Yeong JP, Nahar R, Zhang T, Kared H, Duan K. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557:575.PubMedCrossRef Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KW, Yeong JP, Nahar R, Zhang T, Kared H, Duan K. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557:575.PubMedCrossRef
86.
go back to reference Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, Nonagase Y. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 2017;28:1532–9.PubMedCrossRef Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, Nonagase Y. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 2017;28:1532–9.PubMedCrossRef
87.
go back to reference Schalper KA, Mani N, Toki M, Carvajal-Hausdorf DE, Herbst RS, Rimm DL. Clinical value of measuring T-cell activation and proliferation using multiplexed quantitative fluorescence in non-small cell lung cancer (NSCLC). J. Clin. Oncol. 34(15_suppl):11610–11610.CrossRef Schalper KA, Mani N, Toki M, Carvajal-Hausdorf DE, Herbst RS, Rimm DL. Clinical value of measuring T-cell activation and proliferation using multiplexed quantitative fluorescence in non-small cell lung cancer (NSCLC). J. Clin. Oncol. 34(15_suppl):11610–11610.CrossRef
88.
go back to reference Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B, Tuktamyshov R, Schalper K, Syrigos KN, Rimm DL. Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J Thorac Oncol. 2018;13:1884–96.PubMedCrossRefPubMedCentral Toki MI, Mani N, Smithy JW, Liu Y, Altan M, Wasserman B, Tuktamyshov R, Schalper K, Syrigos KN, Rimm DL. Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations. J Thorac Oncol. 2018;13:1884–96.PubMedCrossRefPubMedCentral
89.
go back to reference Yáñez-Mó M, Siljander PR, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef Yáñez-Mó M, Siljander PR, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef
90.
go back to reference Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance:a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42.PubMedCrossRef Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance:a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42.PubMedCrossRef
91.
go back to reference Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome:function and role in cancer metastasis and drug resistance. Technol Cancer Res Treat. 2018;17:1533033818763450.PubMedPubMedCentral Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome:function and role in cancer metastasis and drug resistance. Technol Cancer Res Treat. 2018;17:1533033818763450.PubMedPubMedCentral
92.
go back to reference Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Seminars Cancer Biol. 2017;44:170–181.PubMedCrossRef Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Seminars Cancer Biol. 2017;44:170–181.PubMedCrossRef
93.
go back to reference Weidle UH, Birzele F, Kollmorgen G, Rueger R. The multiple roles of exosomes in metastasis. Cancer Genom Proteomics. 2017;14:1–5.CrossRef Weidle UH, Birzele F, Kollmorgen G, Rueger R. The multiple roles of exosomes in metastasis. Cancer Genom Proteomics. 2017;14:1–5.CrossRef
94.
go back to reference Jin H, Wu Y, Tan X. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clin Transl Oncol. 2017;19:921–30.PubMedCrossRef Jin H, Wu Y, Tan X. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers. Clin Transl Oncol. 2017;19:921–30.PubMedCrossRef
95.
go back to reference Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer:cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–48.PubMedPubMedCentralCrossRef Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer:cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–48.PubMedPubMedCentralCrossRef
96.
go back to reference Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707–21.PubMedPubMedCentralCrossRef Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26:707–21.PubMedPubMedCentralCrossRef
97.
go back to reference Lobb RJ, Lima LG, Möller A. Exosomes:key mediators of metastasis and pre-metastatic niche formation. In: Seminars in cell & developmental biology. 2017;67:3–10. Lobb RJ, Lima LG, Möller A. Exosomes:key mediators of metastasis and pre-metastatic niche formation. In: Seminars in cell & developmental biology. 2017;67:3–10.
98.
go back to reference Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett. 2019;205:31–39.PubMedCrossRef Allard D, Chrobak P, Allard B, Messaoudi N, Stagg J. Targeting the CD73-adenosine axis in immuno-oncology. Immunol Lett. 2019;205:31–39.PubMedCrossRef
99.
go back to reference Streicher K, Higgs BW, Wu S, Coffman K, Damera G, Durham N, Greenlees L, Lazdun Y, Cheng L, Cooper Z, Ranade K. Increased CD73 and reduced IFNG signature expression in relation to response rates to anti-PD-1(L1) therapies in EGFR-mutant NSCLC. J Clin Oncol. 2017;35:11505–11505.CrossRef Streicher K, Higgs BW, Wu S, Coffman K, Damera G, Durham N, Greenlees L, Lazdun Y, Cheng L, Cooper Z, Ranade K. Increased CD73 and reduced IFNG signature expression in relation to response rates to anti-PD-1(L1) therapies in EGFR-mutant NSCLC. J Clin Oncol. 2017;35:11505–11505.CrossRef
100.
go back to reference Adamiak M, Bujko K, Cymer M, Plonka M, Glaser T, Kucia M, Ratajczak J, Ulrich H, Abdel-Latif A, Ratajczak MZ. Correction:novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia. 2019;8:1. Adamiak M, Bujko K, Cymer M, Plonka M, Glaser T, Kucia M, Ratajczak J, Ulrich H, Abdel-Latif A, Ratajczak MZ. Correction:novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia. 2019;8:1.
102.
go back to reference Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res. 2011;17:4400–13.PubMedCrossRef Pollack BP, Sapkota B, Cartee TV. Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res. 2011;17:4400–13.PubMedCrossRef
103.
go back to reference Mortara L, Castellani P, Meazza R, Tosi G, Barbaro AD, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 2006;12:3435–43.PubMedCrossRef Mortara L, Castellani P, Meazza R, Tosi G, Barbaro AD, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 2006;12:3435–43.PubMedCrossRef
104.
go back to reference Lotem M, Machlenkin A, Hamburger T, Nissan A, Kadouri L, Frankenburg S, Gimmon Z, Elias O, David IB, Kuznetz A, Shiloni E. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells. Clin Cancer Res. 2009;15:4968–77.PubMedCrossRef Lotem M, Machlenkin A, Hamburger T, Nissan A, Kadouri L, Frankenburg S, Gimmon Z, Elias O, David IB, Kuznetz A, Shiloni E. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells. Clin Cancer Res. 2009;15:4968–77.PubMedCrossRef
105.
go back to reference Burns WR, Zhao Y, Frankel TL, Hinrichs CS, Zheng Z, Xu H, Feldman SA, Ferrone S, Rosenberg SA, Morgan RA. A high molecular weight melanoma-associated antigen–specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer Res. 2010;70:3027–33.PubMedPubMedCentralCrossRef Burns WR, Zhao Y, Frankel TL, Hinrichs CS, Zheng Z, Xu H, Feldman SA, Ferrone S, Rosenberg SA, Morgan RA. A high molecular weight melanoma-associated antigen–specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer Res. 2010;70:3027–33.PubMedPubMedCentralCrossRef
106.
go back to reference Garrido G, Rabasa A, Garrido C, Chao L, Garrido F, García-Lora ÁM, Sánchez-Ramírez B. Upregulation of HLA class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Front Pharmacol. 2017;8:595.PubMedPubMedCentralCrossRef Garrido G, Rabasa A, Garrido C, Chao L, Garrido F, García-Lora ÁM, Sánchez-Ramírez B. Upregulation of HLA class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Front Pharmacol. 2017;8:595.PubMedPubMedCentralCrossRef
107.
go back to reference Watanabe S, Hayashi H, Haratani K, Shimizu S, Tanizaki J, Sakai K, Kawakami H, Yonesaka K, Tsurutani J, Togashi Y, Nishio K. Mutational activation of the epidermal growth factor receptor down-regulates major histocompatibility complex class I expression via the extracellular signal-regulated kinase in non–small cell lung cancer. Cancer Sci. 2019;110:52.PubMedCrossRef Watanabe S, Hayashi H, Haratani K, Shimizu S, Tanizaki J, Sakai K, Kawakami H, Yonesaka K, Tsurutani J, Togashi Y, Nishio K. Mutational activation of the epidermal growth factor receptor down-regulates major histocompatibility complex class I expression via the extracellular signal-regulated kinase in non–small cell lung cancer. Cancer Sci. 2019;110:52.PubMedCrossRef
108.
go back to reference Im JS, Herrmann AC, Bernatchez C, Haymaker C, Molldrem JJ, Hong WK, Perez-Soler R. Immune-modulation by epidermal growth factor receptor inhibitors:implication on anti-tumor immunity in lung cancer. PLoS One. 2016;11:e0160004.PubMedPubMedCentralCrossRef Im JS, Herrmann AC, Bernatchez C, Haymaker C, Molldrem JJ, Hong WK, Perez-Soler R. Immune-modulation by epidermal growth factor receptor inhibitors:implication on anti-tumor immunity in lung cancer. PLoS One. 2016;11:e0160004.PubMedPubMedCentralCrossRef
109.
go back to reference Kumai T, Matsuda Y, Oikawa K, Aoki N, Kimura S, Harabuchi Y, Celis E, Kobayashi H. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer. 2013;109:2155.PubMedPubMedCentralCrossRef Kumai T, Matsuda Y, Oikawa K, Aoki N, Kimura S, Harabuchi Y, Celis E, Kobayashi H. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer. 2013;109:2155.PubMedPubMedCentralCrossRef
110.
go back to reference Venugopalan A, Lee MJ, Niu G, Medina-Echeverz J, Tomita Y, Lizak MJ, Cultraro CM, Simpson RM, Chen X, Trepel JB, Guha U. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget. 2016;7:54137.PubMedPubMedCentralCrossRef Venugopalan A, Lee MJ, Niu G, Medina-Echeverz J, Tomita Y, Lizak MJ, Cultraro CM, Simpson RM, Chen X, Trepel JB, Guha U. EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget. 2016;7:54137.PubMedPubMedCentralCrossRef
111.
go back to reference Garrido G, Rabasa A, Garrido C, Lopez A, Chao L, García-Lora ÁM, Garrido F, Fernández LE, Sánchez B. Preclinical modeling of EGFR-specific antibody resistance:oncogenic and immune-associated escape mechanisms. Oncogene. 2014;33:3129.PubMedCrossRef Garrido G, Rabasa A, Garrido C, Lopez A, Chao L, García-Lora ÁM, Garrido F, Fernández LE, Sánchez B. Preclinical modeling of EGFR-specific antibody resistance:oncogenic and immune-associated escape mechanisms. Oncogene. 2014;33:3129.PubMedCrossRef
113.
go back to reference Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development:EGFR gene and cancer. FEBS J. 2010;277:301–8.PubMedCrossRef Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development:EGFR gene and cancer. FEBS J. 2010;277:301–8.PubMedCrossRef
114.
go back to reference Wu JY, Yu CJ, Chang YC, Yang CH, Shih JY, Yang PC. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non–small cell lung cancer. Clin Cancer Res 20111; 17: 3812–21.PubMedCrossRef Wu JY, Yu CJ, Chang YC, Yang CH, Shih JY, Yang PC. Effectiveness of tyrosine kinase inhibitors on “uncommon” epidermal growth factor receptor mutations of unknown clinical significance in non–small cell lung cancer. Clin Cancer Res 20111; 17: 3812–21.PubMedCrossRef
115.
go back to reference Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, Zakowski MF, Kris MG, Ladanyi M. EGFR exon 20 insertion mutations in lung adenocarcinomas:prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9.PubMedPubMedCentralCrossRef Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, Zakowski MF, Kris MG, Ladanyi M. EGFR exon 20 insertion mutations in lung adenocarcinomas:prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9.PubMedPubMedCentralCrossRef
116.
go back to reference Oxnard GR, Lo PC, Nishino M, Dahlberg SE, Lindeman NI, Butaney M, Jackman DM, Johnson BE, Jänne PA. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J Thorac Oncol. 2013;8:179–84.PubMedPubMedCentralCrossRef Oxnard GR, Lo PC, Nishino M, Dahlberg SE, Lindeman NI, Butaney M, Jackman DM, Johnson BE, Jänne PA. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J Thorac Oncol. 2013;8:179–84.PubMedPubMedCentralCrossRef
117.
go back to reference Kobayashi Y, Togashi Y, Yatabe Y, Mizuuchi H, Jangchul P, Kondo C, Shimoji M, Sato K, Suda K, Tomizawa K, Takemoto T. EGFR exon 18 mutations in lung cancer:molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first-or third-generation TKIs. Clin Cancer Res. 2015;21:5305–13.PubMedCrossRef Kobayashi Y, Togashi Y, Yatabe Y, Mizuuchi H, Jangchul P, Kondo C, Shimoji M, Sato K, Suda K, Tomizawa K, Takemoto T. EGFR exon 18 mutations in lung cancer:molecular predictors of augmented sensitivity to afatinib or neratinib as compared with first-or third-generation TKIs. Clin Cancer Res. 2015;21:5305–13.PubMedCrossRef
118.
go back to reference Yamada T, Hirai S, Katayama Y, Yoshimura A, Shiotsu S, Watanabe S, Kikuchi T, Hirose K, Kubota Y, Chihara Y, Harada T. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer. Cancer medicine. 2019;21:1521–9.CrossRef Yamada T, Hirai S, Katayama Y, Yoshimura A, Shiotsu S, Watanabe S, Kikuchi T, Hirose K, Kubota Y, Chihara Y, Harada T. Retrospective efficacy analysis of immune checkpoint inhibitors in patients with EGFR-mutated non-small cell lung cancer. Cancer medicine. 2019;21:1521–9.CrossRef
119.
go back to reference Yoshida H, Kim YH, Ozasa H, Nagai H, Sakamori Y, Tsuji T, Nomizo T, Yasuda Y, Funazo T, Hirai T. Nivolumab in non-small-cell lung cancer with EGFR mutation. Ann Oncol. 2017;29:777–8.CrossRef Yoshida H, Kim YH, Ozasa H, Nagai H, Sakamori Y, Tsuji T, Nomizo T, Yasuda Y, Funazo T, Hirai T. Nivolumab in non-small-cell lung cancer with EGFR mutation. Ann Oncol. 2017;29:777–8.CrossRef
120.
go back to reference Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, Leming P. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer:results from the CA209-003 study. J Clin Oncol. 2018;36:1675–84.PubMedCrossRef Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, Leming P. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer:results from the CA209-003 study. J Clin Oncol. 2018;36:1675–84.PubMedCrossRef
121.
go back to reference Abdelhamed S, Ogura K, Yokoyama S, Saiki I, Hayakawa Y. AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J Cancer. 2016;7:1579.PubMedPubMedCentralCrossRef Abdelhamed S, Ogura K, Yokoyama S, Saiki I, Hayakawa Y. AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J Cancer. 2016;7:1579.PubMedPubMedCentralCrossRef
122.
go back to reference D'incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, Tibaldi C, Minuti G, Salvini J, Coppi E, Chella A. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer. 2015;112:95.PubMedCrossRef D'incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, Tibaldi C, Minuti G, Salvini J, Coppi E, Chella A. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer. 2015;112:95.PubMedCrossRef
123.
go back to reference Lin PL, Wu TC, Wu DW, Wang L, Chen CY, Lee H. An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non–small cell lung cancer via persistent activation of ERK signalling. Eur J Cancer. 2017;85:95–105.PubMedCrossRef Lin PL, Wu TC, Wu DW, Wang L, Chen CY, Lee H. An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non–small cell lung cancer via persistent activation of ERK signalling. Eur J Cancer. 2017;85:95–105.PubMedCrossRef
124.
go back to reference Lin K, Cheng J, Yang T, Li Y, Zhu B. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun. 2015;463(1–2):95–101.PubMedCrossRef Lin K, Cheng J, Yang T, Li Y, Zhu B. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun. 2015;463(1–2):95–101.PubMedCrossRef
125.
go back to reference Zhang W, Pang Q, Yan C, Wang Q, Yang J, Yu S, Liu X, Yuan Z, Wang P, Xiao Z. induction of PD-l1 expression by epidermal growth factor receptor–mediated signaling in esophageal squamous cell carcinoma. Onco Targets Ther. 2017;10:763.PubMedPubMedCentralCrossRef Zhang W, Pang Q, Yan C, Wang Q, Yang J, Yu S, Liu X, Yuan Z, Wang P, Xiao Z. induction of PD-l1 expression by epidermal growth factor receptor–mediated signaling in esophageal squamous cell carcinoma. Onco Targets Ther. 2017;10:763.PubMedPubMedCentralCrossRef
126.
go back to reference Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M. Induction of PD-L1 expression by the EML4–ALK oncoprotein and downstream signaling pathways in non–small cell lung cancer. Clin Cancer Res. 2015;21:4014–21.PubMedCrossRef Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M. Induction of PD-L1 expression by the EML4–ALK oncoprotein and downstream signaling pathways in non–small cell lung cancer. Clin Cancer Res. 2015;21:4014–21.PubMedCrossRef
127.
go back to reference Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, Huang Y. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC:implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.PubMedCrossRef Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, Huang Y. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC:implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.PubMedCrossRef
129.
go back to reference Yokogami K, Wakisaka S, Avruch J, Reeves SA. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol. 2000;10:47–50.PubMedCrossRef Yokogami K, Wakisaka S, Avruch J, Reeves SA. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol. 2000;10:47–50.PubMedCrossRef
130.
go back to reference Okita R, Maeda A, Shimizu K, Nojima Y, Saisho S, Nakata M. PD-L1 overexpression is partially regulated by EGFR/HER2 signaling and associated with poor prognosis in patients with non-small-cell lung cancer. Cancer Immunol Immunother. 2017;66:865–76.PubMedCrossRef Okita R, Maeda A, Shimizu K, Nojima Y, Saisho S, Nakata M. PD-L1 overexpression is partially regulated by EGFR/HER2 signaling and associated with poor prognosis in patients with non-small-cell lung cancer. Cancer Immunol Immunother. 2017;66:865–76.PubMedCrossRef
131.
go back to reference Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z, Huang JA. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol. 2016;49:1360–8.PubMedCrossRef Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z, Huang JA. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol. 2016;49:1360–8.PubMedCrossRef
132.
go back to reference Cheng CC, Lin HC, Tsai KJ, Chiang YW, Lim KH, Chen CG, Su YW, Peng CL, Ho AS, Huang L, Chang YC. Epidermal growth factor induces STAT1 expression to exacerbate the IFNr-mediated PD-L1 axis in epidermal growth factor receptor-positive cancers. Mol Carcinog. 2018;57:1588–98.PubMedCrossRef Cheng CC, Lin HC, Tsai KJ, Chiang YW, Lim KH, Chen CG, Su YW, Peng CL, Ho AS, Huang L, Chang YC. Epidermal growth factor induces STAT1 expression to exacerbate the IFNr-mediated PD-L1 axis in epidermal growth factor receptor-positive cancers. Mol Carcinog. 2018;57:1588–98.PubMedCrossRef
133.
go back to reference Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B, Bromberg JF. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest. 2007;117:3846–56.PubMedPubMedCentralCrossRef Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B, Bromberg JF. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest. 2007;117:3846–56.PubMedPubMedCentralCrossRef
134.
go back to reference Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, Hsu JL. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632.PubMedPubMedCentralCrossRef Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T, Hsu JL. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632.PubMedPubMedCentralCrossRef
135.
go back to reference Takada K, Toyokawa G, Tagawa T, Kohashi K, Shimokawa M, Akamine T, Takamori S, Hirai F, Shoji F, Okamoto T, Oda Y, Maehara Y. PD-L1 expression according to the EGFR status in primary lung adenocarcinoma. Lung Cancer. 2018;116:1–6.PubMedCrossRef Takada K, Toyokawa G, Tagawa T, Kohashi K, Shimokawa M, Akamine T, Takamori S, Hirai F, Shoji F, Okamoto T, Oda Y, Maehara Y. PD-L1 expression according to the EGFR status in primary lung adenocarcinoma. Lung Cancer. 2018;116:1–6.PubMedCrossRef
136.
go back to reference Lee J, Park CK, Yoon HK, Sa YJ, Woo IS, Kim HR, Kim SY, Kim TJ. PD-L1 expression in ROS1-rearranged non-small cell lung cancer:a study using simultaneous genotypic screening of EGFR, ALK, and ROS1. Thorac Cancer. 2019;10:103–10.PubMedCrossRef Lee J, Park CK, Yoon HK, Sa YJ, Woo IS, Kim HR, Kim SY, Kim TJ. PD-L1 expression in ROS1-rearranged non-small cell lung cancer:a study using simultaneous genotypic screening of EGFR, ALK, and ROS1. Thorac Cancer. 2019;10:103–10.PubMedCrossRef
137.
go back to reference Heigener DF, Reck M. Impact of PD-L1 expression in EGFR-positive NSCLC? The answer remains the same. J Thorac Oncol. 2018;13:1060–1.PubMedCrossRef Heigener DF, Reck M. Impact of PD-L1 expression in EGFR-positive NSCLC? The answer remains the same. J Thorac Oncol. 2018;13:1060–1.PubMedCrossRef
138.
go back to reference Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W, Shi H, Jiang J, Wu C. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biology Ther. 2016;17:407–13.CrossRef Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W, Shi H, Jiang J, Wu C. PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biology Ther. 2016;17:407–13.CrossRef
139.
go back to reference Li J, Chen Y, Shi X, Le X, Feng F, Chen J, Zhou C, Chen Y, Wen S, Zeng H, Chen AM. A systematic and genome-wide correlation meta-analysis of PD-L1 expression and targetable NSCLC driver genes. J Thorac Dis. 2017;9:2560.PubMedPubMedCentralCrossRef Li J, Chen Y, Shi X, Le X, Feng F, Chen J, Zhou C, Chen Y, Wen S, Zeng H, Chen AM. A systematic and genome-wide correlation meta-analysis of PD-L1 expression and targetable NSCLC driver genes. J Thorac Dis. 2017;9:2560.PubMedPubMedCentralCrossRef
140.
go back to reference Hersom M, Jørgensen JT. Companion and complementary diagnostics–focus on PD-L1 expression assays for PD-1/PD-L1 checkpoint inhibitors in non–small cell lung Cancer. Ther Drug Monit. 2018;40:9–16.PubMed Hersom M, Jørgensen JT. Companion and complementary diagnostics–focus on PD-L1 expression assays for PD-1/PD-L1 checkpoint inhibitors in non–small cell lung Cancer. Ther Drug Monit. 2018;40:9–16.PubMed
141.
go back to reference Büttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, Dietel M, Longshore JW, López-Ríos F, Penault-Llorca F, Viale G. Programmed death-ligand 1 immunohistochemistry testing:a review of analytical assays and clinical implementation in non–small-cell lung cancer. J Clin Oncol. 2017;35:3867–76.PubMedCrossRef Büttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, Dietel M, Longshore JW, López-Ríos F, Penault-Llorca F, Viale G. Programmed death-ligand 1 immunohistochemistry testing:a review of analytical assays and clinical implementation in non–small-cell lung cancer. J Clin Oncol. 2017;35:3867–76.PubMedCrossRef
142.
go back to reference Nakamura S, Hayashi K, Imaoka Y, Kitamura Y, Akazawa Y, Tabata K, Groen R, Tsuchiya T, Yamasaki N, Nagayasu T, Fukuoka J. Intratumoral heterogeneity of programmed cell death ligand-1 expression is common in lung cancer. PLoS One. 2017;12:e0186192.PubMedPubMedCentralCrossRef Nakamura S, Hayashi K, Imaoka Y, Kitamura Y, Akazawa Y, Tabata K, Groen R, Tsuchiya T, Yamasaki N, Nagayasu T, Fukuoka J. Intratumoral heterogeneity of programmed cell death ligand-1 expression is common in lung cancer. PLoS One. 2017;12:e0186192.PubMedPubMedCentralCrossRef
143.
go back to reference Taube JM. Unleashing the immune system:PD-1 and PD-ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology. 2014;3:e963413.PubMedPubMedCentralCrossRef Taube JM. Unleashing the immune system:PD-1 and PD-ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology. 2014;3:e963413.PubMedPubMedCentralCrossRef
144.
go back to reference Berchuck A, Olt GJ, Soisson AP, Kamel A, Soper JT, Boyer CM, Clarke-Pearson DL, Leslie DS, Bast RC Jr. Heterogeneity of antigen expression in advanced epithelial ovarian cancer. Am J Obstet Gynecol. 1990;162:883–8.PubMedCrossRef Berchuck A, Olt GJ, Soisson AP, Kamel A, Soper JT, Boyer CM, Clarke-Pearson DL, Leslie DS, Bast RC Jr. Heterogeneity of antigen expression in advanced epithelial ovarian cancer. Am J Obstet Gynecol. 1990;162:883–8.PubMedCrossRef
145.
go back to reference Passiglia F, Bronte G, Bazan V, Natoli C, Rizzo S, Galvano A, Listì A, Cicero G, Rolfo C, Santini D, Russo A. PD-L1 expression as predictive biomarker in patients with NSCLC:a pooled analysis. Oncotarget. 2016;7:19738.PubMedPubMedCentralCrossRef Passiglia F, Bronte G, Bazan V, Natoli C, Rizzo S, Galvano A, Listì A, Cicero G, Rolfo C, Santini D, Russo A. PD-L1 expression as predictive biomarker in patients with NSCLC:a pooled analysis. Oncotarget. 2016;7:19738.PubMedPubMedCentralCrossRef
146.
go back to reference Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, Selby MJ, Graziano RF, Mardis ER, Korman AJ, Schreiber RD. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol Res. 2017;5:106–17.PubMedPubMedCentralCrossRef Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, Selby MJ, Graziano RF, Mardis ER, Korman AJ, Schreiber RD. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol Res. 2017;5:106–17.PubMedPubMedCentralCrossRef
147.
go back to reference Cohen MH, Williams GA, Sridhara R, Chen G, McGuinn WD, Morse D, Abraham S, Rahman A, Liang C, Lostritto R, Baird A. United States Food and Drug Administration drug approval summary:gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res. 2004;10:1212–8.PubMedCrossRef Cohen MH, Williams GA, Sridhara R, Chen G, McGuinn WD, Morse D, Abraham S, Rahman A, Liang C, Lostritto R, Baird A. United States Food and Drug Administration drug approval summary:gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res. 2004;10:1212–8.PubMedCrossRef
148.
go back to reference Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval summary:erlotinib (Tarceva®) tablets. Oncologist. 2005;10:461–6.PubMedCrossRef Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval summary:erlotinib (Tarceva®) tablets. Oncologist. 2005;10:461–6.PubMedCrossRef
149.
go back to reference Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, Heo DS. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-lung 1):a phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528–38.PubMedCrossRef Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, Heo DS. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-lung 1):a phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528–38.PubMedCrossRef
150.
go back to reference Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, Shi Y. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-lung 7):a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577–89.PubMedCrossRef Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, Shi Y. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-lung 7):a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577–89.PubMedCrossRef
151.
go back to reference Suda K, Rivard CJ, Mitsudomi T, Hirsch FR. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev Anticancer Ther. 2017;17:779–86.PubMedCrossRef Suda K, Rivard CJ, Mitsudomi T, Hirsch FR. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev Anticancer Ther. 2017;17:779–86.PubMedCrossRef
152.
go back to reference Hata A, Katakami N, Nanjo S, Okuda C, Kaji R, Masago K, Fujita S, Yoshida H, Zama K, Imai Y, Hirata Y. Programmed death-ligand 1 expression and T790M status in EGFR-mutant non-small cell lung cancer. Lung Cancer. 2017;111:182–9.PubMedCrossRef Hata A, Katakami N, Nanjo S, Okuda C, Kaji R, Masago K, Fujita S, Yoshida H, Zama K, Imai Y, Hirata Y. Programmed death-ligand 1 expression and T790M status in EGFR-mutant non-small cell lung cancer. Lung Cancer. 2017;111:182–9.PubMedCrossRef
153.
go back to reference Dominguez C, Tsang KY, Palena C. Short-term EGFR blockade enhances immune-mediated cytotoxicity of EGFR mutant lung cancer cells:rationale for combination therapies. Cell Death Dis. 2016;7:e2380.PubMedPubMedCentralCrossRef Dominguez C, Tsang KY, Palena C. Short-term EGFR blockade enhances immune-mediated cytotoxicity of EGFR mutant lung cancer cells:rationale for combination therapies. Cell Death Dis. 2016;7:e2380.PubMedPubMedCentralCrossRef
154.
go back to reference Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, Mondello P, Han JE, Jarvis CA, Ulmert D, Xiang Q. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol Res. 2016;4:936–47.PubMedPubMedCentralCrossRef Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, Mondello P, Han JE, Jarvis CA, Ulmert D, Xiang Q. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol Res. 2016;4:936–47.PubMedPubMedCentralCrossRef
155.
go back to reference Helland Å, Brustugun OT, Nakken S, Halvorsen AR, Dønnem T, Bremnes R, Busund LT, Sun J, Lorenz S, Solberg SK, Jørgensen LH. High number of kinome-mutations in non-small cell lung cancer is associated with reduced immune response and poor relapse-free survival. Int J Cancer. 2017;141:184–90.PubMedPubMedCentralCrossRef Helland Å, Brustugun OT, Nakken S, Halvorsen AR, Dønnem T, Bremnes R, Busund LT, Sun J, Lorenz S, Solberg SK, Jørgensen LH. High number of kinome-mutations in non-small cell lung cancer is associated with reduced immune response and poor relapse-free survival. Int J Cancer. 2017;141:184–90.PubMedPubMedCentralCrossRef
156.
go back to reference Busch SE, Hanke ML, Kargl J, Metz HE, MacPherson D, Houghton AM. Lung cancer subtypes generate unique immune responses. J Immunol. 2016;197:4493–503.PubMedCrossRef Busch SE, Hanke ML, Kargl J, Metz HE, MacPherson D, Houghton AM. Lung cancer subtypes generate unique immune responses. J Immunol. 2016;197:4493–503.PubMedCrossRef
157.
go back to reference Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008;111:5457–66.PubMedCrossRef Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008;111:5457–66.PubMedCrossRef
158.
go back to reference Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, Han Y. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 2016;76:5671–82.PubMedPubMedCentralCrossRef Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, Han Y. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 2016;76:5671–82.PubMedPubMedCentralCrossRef
159.
go back to reference Yamaki M, Sugiura K, Muro Y, Shimoyama Y, Tomita Y. Epidermal growth factor receptor tyrosine kinase inhibitors induce CCL2 and CCL5 via reduction in IL-1R2 in keratinocytes. Exp Dermatol. 2010;19:730–5.PubMedCrossRef Yamaki M, Sugiura K, Muro Y, Shimoyama Y, Tomita Y. Epidermal growth factor receptor tyrosine kinase inhibitors induce CCL2 and CCL5 via reduction in IL-1R2 in keratinocytes. Exp Dermatol. 2010;19:730–5.PubMedCrossRef
160.
go back to reference Paul T, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V, Steffens M, Scholl C, Hichert V, Seufferlein T, Stingl JC. Cytokine regulation by epidermal growth factor receptor inhibitors and epidermal growth factor receptor inhibitor associated skin toxicity in cancer patients. Eur J Cancer. 2014;50:1855–63.PubMedCrossRef Paul T, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V, Steffens M, Scholl C, Hichert V, Seufferlein T, Stingl JC. Cytokine regulation by epidermal growth factor receptor inhibitors and epidermal growth factor receptor inhibitor associated skin toxicity in cancer patients. Eur J Cancer. 2014;50:1855–63.PubMedCrossRef
162.
go back to reference Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid- derived suppressor cells. Oncotarget. 2017:3649–65. Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid- derived suppressor cells. Oncotarget. 2017:3649–65.
163.
go back to reference Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, Brand A, Hogg R, Etemadmoghadam D, George J, Birrer MJ. Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS One. 2011;6:e17617.PubMedPubMedCentralCrossRef Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, Brand A, Hogg R, Etemadmoghadam D, George J, Birrer MJ. Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS One. 2011;6:e17617.PubMedPubMedCentralCrossRef
164.
go back to reference Andresen E, Günther G, Bullwinkel J, Lange C, Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One. 2011;6:e21898.PubMedPubMedCentralCrossRef Andresen E, Günther G, Bullwinkel J, Lange C, Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One. 2011;6:e21898.PubMedPubMedCentralCrossRef
165.
go back to reference De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009;28:3341–52.PubMedPubMedCentralCrossRef De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009;28:3341–52.PubMedPubMedCentralCrossRef
166.
go back to reference Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.PubMedCrossRef Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.PubMedCrossRef
167.
go back to reference Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349.PubMedCrossRef Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349.PubMedCrossRef
168.
go back to reference Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD, Chu FF, Pfeifer GP. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 2008;68:10280–9.PubMedPubMedCentralCrossRef Hahn MA, Hahn T, Lee DH, Esworthy RS, Kim BW, Riggs AD, Chu FF, Pfeifer GP. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res. 2008;68:10280–9.PubMedPubMedCentralCrossRef
169.
go back to reference Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, Carson WF, Cavassani KA, Li X, Lukacs NW, Hogaboam CM. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114:3244–54.PubMedPubMedCentralCrossRef Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM, Carson WF, Cavassani KA, Li X, Lukacs NW, Hogaboam CM. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood. 2009;114:3244–54.PubMedPubMedCentralCrossRef
170.
go back to reference Chen X, El Gazzar M, Yoza BK, McCall CE. The NF-κB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem. 2009;284:27857–65.PubMedPubMedCentralCrossRef Chen X, El Gazzar M, Yoza BK, McCall CE. The NF-κB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J Biol Chem. 2009;284:27857–65.PubMedPubMedCentralCrossRef
171.
go back to reference Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G. Myeloid STAT3 promotes lung tumorigenesis by transforming tumor immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res. 2017;5:257–68.PubMedPubMedCentralCrossRef Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G. Myeloid STAT3 promotes lung tumorigenesis by transforming tumor immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res. 2017;5:257–68.PubMedPubMedCentralCrossRef
172.
go back to reference El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE. G9a and HP1 couple histone and DNA methylation to TNFα transcription silencing during endotoxin tolerance. J Biol Chem. 2008;283:32198–208.PubMedPubMedCentralCrossRef El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE. G9a and HP1 couple histone and DNA methylation to TNFα transcription silencing during endotoxin tolerance. J Biol Chem. 2008;283:32198–208.PubMedPubMedCentralCrossRef
173.
174.
go back to reference Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci. 2004;61:2571–87.PubMedCrossRef Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci. 2004;61:2571–87.PubMedCrossRef
175.
go back to reference Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment:tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology. 2015;4:e1016700.PubMedPubMedCentralCrossRef Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment:tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology. 2015;4:e1016700.PubMedPubMedCentralCrossRef
176.
go back to reference Han JJ, Kim DW, Koh J, Keam B, Kim TM, Jeon YK, Lee SH, Chung DH, Heo DS. Change in PD-L1 expression after acquiring resistance to gefitinib in EGFR-mutant non–small-cell lung cancer. Clin Lung Cancer. 2016;17:263–70.PubMedCrossRef Han JJ, Kim DW, Koh J, Keam B, Kim TM, Jeon YK, Lee SH, Chung DH, Heo DS. Change in PD-L1 expression after acquiring resistance to gefitinib in EGFR-mutant non–small-cell lung cancer. Clin Lung Cancer. 2016;17:263–70.PubMedCrossRef
177.
go back to reference Hsu KH, Huang YH, Tseng JS, Chen KC, Ku WH, Su KY, Chen JJ, Chen HW, Yu SL, Yang TY, Chang GC. High PD-L1 expression correlates with primary resistance to EGFR-TKIs in treatment naïve advanced EGFR-mutant lung adenocarcinoma patients. Lung Cancer. 2019;127:37–43.PubMedCrossRef Hsu KH, Huang YH, Tseng JS, Chen KC, Ku WH, Su KY, Chen JJ, Chen HW, Yu SL, Yang TY, Chang GC. High PD-L1 expression correlates with primary resistance to EGFR-TKIs in treatment naïve advanced EGFR-mutant lung adenocarcinoma patients. Lung Cancer. 2019;127:37–43.PubMedCrossRef
178.
go back to reference Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, Liu SY, Yin K, Chen RL, Huang SM, Chen ZH. Strong programmed death ligand 1 expression predicts poor response and De novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J Thorac Oncol. 2018;13:1668–75.PubMedCrossRef Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, Liu SY, Yin K, Chen RL, Huang SM, Chen ZH. Strong programmed death ligand 1 expression predicts poor response and De novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J Thorac Oncol. 2018;13:1668–75.PubMedCrossRef
179.
go back to reference Soria JC, Wu YL, Nakagawa K, Kim SW, Yang JJ, Ahn MJ, Wang J, Yang JC, Lu Y, Atagi S, Ponce S. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol. 2015;16:990–8.PubMedCrossRef Soria JC, Wu YL, Nakagawa K, Kim SW, Yang JJ, Ahn MJ, Wang J, Yang JC, Lu Y, Atagi S, Ponce S. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol. 2015;16:990–8.PubMedCrossRef
180.
go back to reference Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, Wolf B. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC. J Thorac Oncol. 2018;13:1138–45.PubMedPubMedCentralCrossRef Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, Wolf B. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC. J Thorac Oncol. 2018;13:1138–45.PubMedPubMedCentralCrossRef
181.
go back to reference Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–24.PubMedCrossRef Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–24.PubMedCrossRef
182.
go back to reference Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2:1096.PubMedCrossRef Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2:1096.PubMedCrossRef
183.
go back to reference Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607.PubMedPubMedCentralCrossRef Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20:607.PubMedPubMedCentralCrossRef
184.
go back to reference Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, Zeng W, Giobbie-Hurder A, Atkins MB, Ibrahim N, Friedlander P. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42.PubMedPubMedCentralCrossRef Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, Zeng W, Giobbie-Hurder A, Atkins MB, Ibrahim N, Friedlander P. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42.PubMedPubMedCentralCrossRef
185.
go back to reference Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, Denker M. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.PubMedPubMedCentralCrossRef Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, Denker M. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.PubMedPubMedCentralCrossRef
186.
go back to reference Reck M, Mok TS, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7:387–401.PubMedCrossRef Reck M, Mok TS, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7:387–401.PubMedCrossRef
187.
go back to reference Blakely CM, Watkins TB, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, Rotow J. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 2017;49:1693.PubMedPubMedCentralCrossRef Blakely CM, Watkins TB, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, Rotow J. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 2017;49:1693.PubMedPubMedCentralCrossRef
188.
go back to reference Gibbons DL, Chow LQ, Kim DW, Kim SW, Yeh T, Song X, Jiang H, Taylor R, Karakunnel J, Creelan B. 57O efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): a phase I expansion in TKI-naïve patients (pts) with EGFR mutant NSCLC. J Thorac oncol. 2016;11(4 Suppl):S79.CrossRef Gibbons DL, Chow LQ, Kim DW, Kim SW, Yeh T, Song X, Jiang H, Taylor R, Karakunnel J, Creelan B. 57O efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): a phase I expansion in TKI-naïve patients (pts) with EGFR mutant NSCLC. J Thorac oncol. 2016;11(4 Suppl):S79.CrossRef
189.
go back to reference Planchard D, Barlesi F, Gomez-Roca C, Mazieres J, Varga A, Greillier L, Chaput N, Parlavecchio C, Malekzadeh K, Ngocamus M, Zahi S. Phase I, safety, tolerability and preliminary efficacy study of tremelimumab (Trem) in combination with gefitinib (Gef) in EGFR-mutant (EGFR-mut) NSCLC (GEFTREM). Ann Oncol. 2016;27(6):416–454. https://doi.org/10.1093/annonc/mdw383. Planchard D, Barlesi F, Gomez-Roca C, Mazieres J, Varga A, Greillier L, Chaput N, Parlavecchio C, Malekzadeh K, Ngocamus M, Zahi S. Phase I, safety, tolerability and preliminary efficacy study of tremelimumab (Trem) in combination with gefitinib (Gef) in EGFR-mutant (EGFR-mut) NSCLC (GEFTREM). Ann Oncol. 2016;27(6):416–454. https://​doi.​org/​10.​1093/​annonc/​mdw383.
190.
go back to reference Spigel DR, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S, Thurmes P, Spira A, Jotte R, Zhu J, Lin WH. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation—positive advanced non–small cell lung cancer (CheckMate 370). J Thorac Oncol. 2018;13(5):682–8.PubMedCrossRef Spigel DR, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S, Thurmes P, Spira A, Jotte R, Zhu J, Lin WH. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation—positive advanced non–small cell lung cancer (CheckMate 370). J Thorac Oncol. 2018;13(5):682–8.PubMedCrossRef
191.
go back to reference Gettinger S, Rizvi N, Chow LQ, Borghaei H, Brahmer JR, Juergens R, Shepherd FA, Laurie SA, Gerber DE, Goldman J, Shen Y. 1054PD Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) or erlotinib (ERL) in advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2014;25(suppl_4):iv363.CrossRef Gettinger S, Rizvi N, Chow LQ, Borghaei H, Brahmer JR, Juergens R, Shepherd FA, Laurie SA, Gerber DE, Goldman J, Shen Y. 1054PD Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) or erlotinib (ERL) in advanced non-small cell lung cancer (NSCLC). Ann Oncol. 2014;25(suppl_4):iv363.CrossRef
192.
go back to reference Ma BB, Rudin CM, Cervantes A, Dowlati A, Costa D, Schmid P, Heist R, Villaflor VM, Sarkar I, Huseni MA, Foster P. 441O Preliminary safety and clinical activity of erlotinib plus atezolizumab from a Phase Ib study in advanced NSCLC. Ann Oncol. 2016;27(9). https://doi.org/10.1093/annonc/mdw594.005 Ma BB, Rudin CM, Cervantes A, Dowlati A, Costa D, Schmid P, Heist R, Villaflor VM, Sarkar I, Huseni MA, Foster P. 441O Preliminary safety and clinical activity of erlotinib plus atezolizumab from a Phase Ib study in advanced NSCLC. Ann Oncol. 2016;27(9). https://​doi.​org/​10.​1093/​annonc/​mdw594.​005
193.
go back to reference Ahn MJ, Yang J, Yu H, Saka H, Ramalingam S, Goto K. Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J Thorac Oncol. 2016;11(4):S115.CrossRef Ahn MJ, Yang J, Yu H, Saka H, Ramalingam S, Goto K. Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J Thorac Oncol. 2016;11(4):S115.CrossRef
194.
go back to reference Garassino MC, Cho BC, Kim JH, Mazieres J, Gray JE, Wheatley-Price P, Park K, Soo RA, Huang Y, Wadsworth C, Dennis PA. Durvalumab in≥ 3rd-line advanced NSCLC: Updated results from the phase 2 ATLANTIC study. Lancet Oncol. 2018;19:521–536. Garassino MC, Cho BC, Kim JH, Mazieres J, Gray JE, Wheatley-Price P, Park K, Soo RA, Huang Y, Wadsworth C, Dennis PA. Durvalumab in≥ 3rd-line advanced NSCLC: Updated results from the phase 2 ATLANTIC study. Lancet Oncol. 2018;19:521–536.
195.
go back to reference Cappuzzo F, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, Kopp HG, Daniel D, Mccune S, Mekhail T, Zer A. LBA53 IMpower130: progression-free survival (PFS) and safety analysis from a randomised Phase III study of carboplatin+ nab-paclitaxel (CnP) with or without atezolizumab (atezo) as first-line (1L) therapy in advanced non-squamous NSCLC. Ann Oncol. 2018;29(suppl_8):mdy424–065.CrossRef Cappuzzo F, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, Kopp HG, Daniel D, Mccune S, Mekhail T, Zer A. LBA53 IMpower130: progression-free survival (PFS) and safety analysis from a randomised Phase III study of carboplatin+ nab-paclitaxel (CnP) with or without atezolizumab (atezo) as first-line (1L) therapy in advanced non-squamous NSCLC. Ann Oncol. 2018;29(suppl_8):mdy424–065.CrossRef
Metadata
Title
Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations
Authors
Anqi Lin
Ting Wei
Hui Meng
Peng Luo
Jian Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2019
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-019-1062-7

Other articles of this Issue 1/2019

Molecular Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine