Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | NSCLC | Research

MALAT1-regulated gene expression profiling in lung cancer cell lines

Authors: Jungwook Roh, Boseong Kim, Mijung Im, Wonyi Jang, Yeonsoo Chae, JiHoon Kang, BuHyun Youn, Wanyeon Kim

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and has a poor prognosis. Identifying biomarkers based on molecular mechanisms is critical for early diagnosis, timely treatment, and improved prognosis of lung cancer. MALAT1 has been reported to have overexpressed and tumor-promoting functions in NSCLC. It has been proposed as a potential biomarker for the diagnosis and prognosis of cancer. Therefore, this study was conducted to profile the changes in gene expression according to the regulation of expression of MALAT1 in NSCLC cell lines and to investigate the correlation through bioinformatic analysis of differentially expressed genes (DEGs).

Methods

MALAT1 expression levels were measured using RT-qPCR. The biological functions of MALAT1 in NSCLC were analyzed by cell counting, colony forming, wound-healing, and Transwell invasion assays. In addition, gene expression profiling in response to the knockdown of MALAT1 was analyzed by transcriptome sequencing, and differentially expressed genes regulated by MALAT1 were performed by GO and KEGG pathway enrichment analyses. Bioinformatic databases were used for gene expression analysis and overall survival analysis.

Results

Comparative analysis versus MALAT1 expression in MRC5 cells (a normal lung cell line) and the three NSCLC cell lines showed that MALAT1 expression was significantly higher in the NSCLC cells. MALAT1 knockdown decreased cell survival, proliferation, migration, and invasion in all three NSCLC cell lines. RNA-seq analysis of DEGs in NSCLC cells showed 198 DEGs were upregulated and 266 DEGs downregulated by MALAT1 knockdown in all three NSCLC cell lines. Survival analysis on these common DEGs performed using the OncoLnc database resulted in the selection of five DEGs, phosphoglycerate mutase 1 (PGAM1), phosphoglycerate mutase 4 (PGAM4), nucleolar protein 6 (NOL6), nucleosome assembly protein 1 like 5 (NAP1L5), and sestrin1 (SESN1). The gene expression levels of these selected DEGs were proved to gene expression analysis using the TNMplot database.

Conclusion

MALAT1 might function as an oncogene that enhances NSCLC cell survival, proliferation, colony formation, and invasion. RNA-seq and bioinformatic analyses resulted in the selection of five DEGs, PGAM1, PGAM4, NOL6, NAP1L5, and SESN1, which were found to be closely related to patient survival and tumorigenesis. We believe that further investigation of these five DEGs will provide valuable information on the oncogenic role of MALAT1 in NSCLC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
3.
go back to reference Shriwash N, Singh P, Arora S, Ali SM, Ali S, Dohare R. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon. 2019;5(6):e01707.PubMedPubMedCentralCrossRef Shriwash N, Singh P, Arora S, Ali SM, Ali S, Dohare R. Identification of differentially expressed genes in small and non-small cell lung cancer based on meta-analysis of mRNA. Heliyon. 2019;5(6):e01707.PubMedPubMedCentralCrossRef
4.
go back to reference Slawinski G, Wrona A, Dabrowska-Kugacka A, Raczak G, Lewicka E. Immune Checkpoint inhibitors and Cardiac Toxicity in Patients treated for Non-Small Lung Cancer: a review. Int J Mol Sci 2020, 21(19). Slawinski G, Wrona A, Dabrowska-Kugacka A, Raczak G, Lewicka E. Immune Checkpoint inhibitors and Cardiac Toxicity in Patients treated for Non-Small Lung Cancer: a review. Int J Mol Sci 2020, 21(19).
5.
go back to reference Li P, Chen X, Zhou S, Xia X, Wang E, Han R, Zeng D, Fei G, Wang R. High expression of DEPDC1B predicts poor prognosis in Lung Adenocarcinoma. J Inflamm Res. 2022;15:4171–84.PubMedPubMedCentralCrossRef Li P, Chen X, Zhou S, Xia X, Wang E, Han R, Zeng D, Fei G, Wang R. High expression of DEPDC1B predicts poor prognosis in Lung Adenocarcinoma. J Inflamm Res. 2022;15:4171–84.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Qian Y, Shi L, Luo Z. Long non-coding RNAs in Cancer: implications for diagnosis, prognosis, and Therapy. Front Med (Lausanne). 2020;7:612393.PubMedCrossRef Qian Y, Shi L, Luo Z. Long non-coding RNAs in Cancer: implications for diagnosis, prognosis, and Therapy. Front Med (Lausanne). 2020;7:612393.PubMedCrossRef
8.
go back to reference Do H, Kim W. Roles of oncogenic long non-coding RNAs in Cancer Development. Genomics Inf. 2018;16(4):e18.CrossRef Do H, Kim W. Roles of oncogenic long non-coding RNAs in Cancer Development. Genomics Inf. 2018;16(4):e18.CrossRef
9.
go back to reference Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: progress from identifying mechanisms to challenges and opportunities of clinical treatment. Mol Ther Nucleic Acids. 2021;25:613–37.PubMedPubMedCentralCrossRef Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: progress from identifying mechanisms to challenges and opportunities of clinical treatment. Mol Ther Nucleic Acids. 2021;25:613–37.PubMedPubMedCentralCrossRef
10.
go back to reference Chae Y, Roh J, Kim W. The Roles played by long non-coding RNAs in Glioma Resistance. Int J Mol Sci 2021, 22(13). Chae Y, Roh J, Kim W. The Roles played by long non-coding RNAs in Glioma Resistance. Int J Mol Sci 2021, 22(13).
11.
go back to reference Seo D, Kim D, Kim W. Long non-coding RNA linc00152 acting as a promising oncogene in cancer progression. Genomics Inf. 2019;17(4):e36.CrossRef Seo D, Kim D, Kim W. Long non-coding RNA linc00152 acting as a promising oncogene in cancer progression. Genomics Inf. 2019;17(4):e36.CrossRef
12.
go back to reference Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia R, Lu KH, Li JH, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging mir-331-3p in gastric cancer. Mol Cancer. 2014;13:92.PubMedPubMedCentralCrossRef Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia R, Lu KH, Li JH, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging mir-331-3p in gastric cancer. Mol Cancer. 2014;13:92.PubMedPubMedCentralCrossRef
13.
go back to reference Roh J, Im M, Kang J, Youn B, Kim W. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Anim Cells Syst (Seoul). 2023;27(1):19–28.PubMedCrossRef Roh J, Im M, Kang J, Youn B, Kim W. Long non-coding RNA in glioma: novel genetic players in temozolomide resistance. Anim Cells Syst (Seoul). 2023;27(1):19–28.PubMedCrossRef
14.
go back to reference Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications. Noncoding RNA 2020, 6(2). Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications. Noncoding RNA 2020, 6(2).
15.
go back to reference Ye D, Deng Y, Shen Z. The role and mechanism of MALAT1 long non-coding RNA in the diagnosis and treatment of Head and Neck squamous cell carcinoma. Onco Targets Ther. 2021;14:4127–36.PubMedPubMedCentralCrossRef Ye D, Deng Y, Shen Z. The role and mechanism of MALAT1 long non-coding RNA in the diagnosis and treatment of Head and Neck squamous cell carcinoma. Onco Targets Ther. 2021;14:4127–36.PubMedPubMedCentralCrossRef
17.
go back to reference Yu W, Ding J, He M, Chen Y, Wang R, Han Z, Xing EZ, Zhang C, Yeh S. Estrogen receptor beta promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene. 2019;38(8):1225–38.PubMedCrossRef Yu W, Ding J, He M, Chen Y, Wang R, Han Z, Xing EZ, Zhang C, Yeh S. Estrogen receptor beta promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene. 2019;38(8):1225–38.PubMedCrossRef
18.
go back to reference Duan G, Zhang C, Xu C, Xu C, Zhang L, Zhang Y. Knockdown of MALAT1 inhibits osteosarcoma progression via regulating the miR–34a/cyclin D1 axis. Int J Oncol. 2019;54(1):17–28.PubMed Duan G, Zhang C, Xu C, Xu C, Zhang L, Zhang Y. Knockdown of MALAT1 inhibits osteosarcoma progression via regulating the miR–34a/cyclin D1 axis. Int J Oncol. 2019;54(1):17–28.PubMed
19.
go back to reference Chang J, Xu W, Du X, Hou J. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. Onco Targets Ther. 2018;11:3461–73.PubMedPubMedCentralCrossRef Chang J, Xu W, Du X, Hou J. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. Onco Targets Ther. 2018;11:3461–73.PubMedPubMedCentralCrossRef
20.
go back to reference Seo D, Kim D, Chae Y, Kim W. The ceRNA network of lncRNA and miRNA in lung cancer. Genomics Inf. 2020;18(4):e36.CrossRef Seo D, Kim D, Chae Y, Kim W. The ceRNA network of lncRNA and miRNA in lung cancer. Genomics Inf. 2020;18(4):e36.CrossRef
21.
go back to reference Rosell R, Bivona TG, Karachaliou N. Genetics and biomarkers in personalisation of lung cancer treatment. Lancet. 2013;382(9893):720–31.PubMedCrossRef Rosell R, Bivona TG, Karachaliou N. Genetics and biomarkers in personalisation of lung cancer treatment. Lancet. 2013;382(9893):720–31.PubMedCrossRef
22.
go back to reference Cui Y, Li G, Zhang X, Dai F, Zhang R. Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett. 2018;16(4):4821–8.PubMedPubMedCentral Cui Y, Li G, Zhang X, Dai F, Zhang R. Increased MALAT1 expression contributes to cisplatin resistance in non-small cell lung cancer. Oncol Lett. 2018;16(4):4821–8.PubMedPubMedCentral
23.
go back to reference Yang Q, Chen W, Xu Y, Lv X, Zhang M, Jiang H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol Appl Pharmacol. 2018;356:1–7.PubMedCrossRef Yang Q, Chen W, Xu Y, Lv X, Zhang M, Jiang H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol Appl Pharmacol. 2018;356:1–7.PubMedCrossRef
24.
go back to reference Hao L, Wu W, Xu Y, Chen Y, Meng C, Yun J, Wang X. LncRNA-MALAT1: a key participant in the occurrence and development of Cancer. Molecules 2023, 28(5). Hao L, Wu W, Xu Y, Chen Y, Meng C, Yun J, Wang X. LncRNA-MALAT1: a key participant in the occurrence and development of Cancer. Molecules 2023, 28(5).
25.
go back to reference Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A. 2012;109(47):19202–7.PubMedPubMedCentralCrossRef Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical structures by the 3’-end sequences of MALAT1 and MENβ noncoding RNAs. Proc Natl Acad Sci U S A. 2012;109(47):19202–7.PubMedPubMedCentralCrossRef
26.
go back to reference Kang J, Kim W, Lee S, Kwon D, Chun J, Son B, Kim E, Lee JM, Youn H, Youn B. TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene. 2017;36(11):1585–96.PubMedCrossRef Kang J, Kim W, Lee S, Kwon D, Chun J, Son B, Kim E, Lee JM, Youn H, Youn B. TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene. 2017;36(11):1585–96.PubMedCrossRef
27.
go back to reference Kang J, Kim W, Seo H, Kim E, Son B, Lee S, Park G, Jo S, Moon C, Youn H, et al. Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci Rep. 2018;8(1):8394.PubMedPubMedCentralCrossRef Kang J, Kim W, Seo H, Kim E, Son B, Lee S, Park G, Jo S, Moon C, Youn H, et al. Radiation-induced overexpression of transthyretin inhibits retinol-mediated hippocampal neurogenesis. Sci Rep. 2018;8(1):8394.PubMedPubMedCentralCrossRef
28.
go back to reference Do H, Kim D, Kang J, Son B, Seo D, Youn H, Youn B, Kim W. TFAP2C increases cell proliferation by downregulating GADD45B and PMAIP1 in non-small cell lung cancer cells. Biol Res. 2019;52(1):35.PubMedPubMedCentralCrossRef Do H, Kim D, Kang J, Son B, Seo D, Youn H, Youn B, Kim W. TFAP2C increases cell proliferation by downregulating GADD45B and PMAIP1 in non-small cell lung cancer cells. Biol Res. 2019;52(1):35.PubMedPubMedCentralCrossRef
29.
go back to reference Kim W, Youn H, Lee S, Kim E, Kim D, Sub Lee J, Lee JM, Youn B. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med. 2018;50(1):e434.PubMedPubMedCentralCrossRef Kim W, Youn H, Lee S, Kim E, Kim D, Sub Lee J, Lee JM, Youn B. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp Mol Med. 2018;50(1):e434.PubMedPubMedCentralCrossRef
30.
go back to reference Kim E, Kim W, Lee S, Chun J, Kang J, Park G, Han I, Yang HJ, Youn H, Youn B. TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci Rep. 2017;7(1):8923.PubMedPubMedCentralCrossRef Kim E, Kim W, Lee S, Chun J, Kang J, Park G, Han I, Yang HJ, Youn H, Youn B. TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci Rep. 2017;7(1):8923.PubMedPubMedCentralCrossRef
31.
go back to reference Ni T, Wang H, Li D, Tao L, Lv M, Jin F, Wang W, Feng J, Qian Y, Sunagawa M, et al. Huachansu Capsule inhibits the proliferation of human gastric cancer cells via Akt/mTOR pathway. Biomed Pharmacother. 2019;118:109241.PubMedCrossRef Ni T, Wang H, Li D, Tao L, Lv M, Jin F, Wang W, Feng J, Qian Y, Sunagawa M, et al. Huachansu Capsule inhibits the proliferation of human gastric cancer cells via Akt/mTOR pathway. Biomed Pharmacother. 2019;118:109241.PubMedCrossRef
32.
go back to reference Seo D, Roh J, Chae Y, Kim W. Gene expression profiling after LINC00472 overexpression in an NSCLC cell line1. Cancer Biomark. 2021;32(2):175–88.PubMedCrossRef Seo D, Roh J, Chae Y, Kim W. Gene expression profiling after LINC00472 overexpression in an NSCLC cell line1. Cancer Biomark. 2021;32(2):175–88.PubMedCrossRef
34.
go back to reference Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67.PubMedPubMedCentralCrossRef Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67.PubMedPubMedCentralCrossRef
35.
go back to reference Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.PubMedPubMedCentralCrossRef Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.PubMedPubMedCentralCrossRef
36.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.PubMedPubMedCentralCrossRef Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.PubMedPubMedCentralCrossRef
37.
go back to reference Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, Hill DP et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224(1). Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, Hill DP et al. The Gene Ontology knowledgebase in 2023. Genetics 2023, 224(1).
40.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–d592.PubMedCrossRef Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–d592.PubMedCrossRef
41.
go back to reference Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–w221.PubMedPubMedCentralCrossRef Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–w221.PubMedPubMedCentralCrossRef
42.
go back to reference Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.PubMedCrossRef Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.PubMedCrossRef
43.
go back to reference Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci 2016, 2. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput Sci 2016, 2.
44.
go back to reference Mo CH, Gao L, Zhu XF, Wei KL, Zeng JJ, Chen G, Feng ZB. The clinicopathological significance of UBE2C in breast cancer: a study based on immunohistochemistry, microarray and RNA-sequencing data. Cancer Cell Int. 2017;17:83.PubMedPubMedCentralCrossRef Mo CH, Gao L, Zhu XF, Wei KL, Zeng JJ, Chen G, Feng ZB. The clinicopathological significance of UBE2C in breast cancer: a study based on immunohistochemistry, microarray and RNA-sequencing data. Cancer Cell Int. 2017;17:83.PubMedPubMedCentralCrossRef
45.
go back to reference Bartha A, Gyorffy B. TNMplot.com: a web Tool for the comparison of Gene expression in normal, Tumor and metastatic tissues. Int J Mol Sci 2021, 22(5). Bartha A, Gyorffy B. TNMplot.com: a web Tool for the comparison of Gene expression in normal, Tumor and metastatic tissues. Int J Mol Sci 2021, 22(5).
46.
go back to reference Zhang Y, Yang J, Wang X, Li X. GNG7 and ADCY1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma through bioinformatic-based analyses. Sci Rep. 2021;11(1):20441.PubMedPubMedCentralCrossRef Zhang Y, Yang J, Wang X, Li X. GNG7 and ADCY1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma through bioinformatic-based analyses. Sci Rep. 2021;11(1):20441.PubMedPubMedCentralCrossRef
47.
go back to reference Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30(4):529–47.PubMedCrossRef Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30(4):529–47.PubMedCrossRef
48.
go back to reference Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–84.PubMedCrossRef Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–84.PubMedCrossRef
49.
go back to reference Yan M, Sun L, Li J, Yu H, Lin H, Yu T, Zhao F, Zhu M, Liu L, Geng Q, et al. RNA-binding protein KHSRP promotes tumor growth and metastasis in non-small cell lung cancer. J Exp Clin Cancer Res. 2019;38(1):478.PubMedPubMedCentralCrossRef Yan M, Sun L, Li J, Yu H, Lin H, Yu T, Zhao F, Zhu M, Liu L, Geng Q, et al. RNA-binding protein KHSRP promotes tumor growth and metastasis in non-small cell lung cancer. J Exp Clin Cancer Res. 2019;38(1):478.PubMedPubMedCentralCrossRef
51.
go back to reference Roh J, Im M, Chae Y, Kang J, Kim W. The involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in Cancer. Int J Mol Sci 2022, 23(23). Roh J, Im M, Chae Y, Kang J, Kim W. The involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in Cancer. Int J Mol Sci 2022, 23(23).
52.
go back to reference Fukushi A, Kim HD, Chang YC, Kim CH. Revisited metabolic control and reprogramming cancers by means of the Warburg Effect in Tumor cells. Int J Mol Sci 2022, 23(17). Fukushi A, Kim HD, Chang YC, Kim CH. Revisited metabolic control and reprogramming cancers by means of the Warburg Effect in Tumor cells. Int J Mol Sci 2022, 23(17).
53.
go back to reference Rong F, Liu L, Zou C, Zeng J, Xu Y. MALAT1 promotes cell tumorigenicity through regulating miR-515-5p/EEF2 Axis in Non-Small Cell Lung Cancer. Cancer Manag Res. 2020;12:7691–701.PubMedPubMedCentralCrossRef Rong F, Liu L, Zou C, Zeng J, Xu Y. MALAT1 promotes cell tumorigenicity through regulating miR-515-5p/EEF2 Axis in Non-Small Cell Lung Cancer. Cancer Manag Res. 2020;12:7691–701.PubMedPubMedCentralCrossRef
54.
go back to reference Chen B, Yang L, Zhang R, Gan Y, Zhang W, Liu D, Chen H, Tang H. Hyperphosphorylation of RPS6KB1, rather than overexpression, predicts worse prognosis in non-small cell lung cancer patients. PLoS ONE. 2017;12(8):e0182891.PubMedPubMedCentralCrossRef Chen B, Yang L, Zhang R, Gan Y, Zhang W, Liu D, Chen H, Tang H. Hyperphosphorylation of RPS6KB1, rather than overexpression, predicts worse prognosis in non-small cell lung cancer patients. PLoS ONE. 2017;12(8):e0182891.PubMedPubMedCentralCrossRef
55.
go back to reference Li S, Mei Z, Hu HB, Zhang X. The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J Cell Physiol. 2018;233(9):6679–88.PubMedCrossRef Li S, Mei Z, Hu HB, Zhang X. The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J Cell Physiol. 2018;233(9):6679–88.PubMedCrossRef
56.
go back to reference Okudela K, Mitsui H, Suzuki T, Woo T, Tateishi Y, Umeda S, Saito Y, Tajiri M, Masuda M, Ohashi K. Expression of HDAC9 in lung cancer–potential role in lung carcinogenesis. Int J Clin Exp Pathol. 2014;7(1):213–20.PubMed Okudela K, Mitsui H, Suzuki T, Woo T, Tateishi Y, Umeda S, Saito Y, Tajiri M, Masuda M, Ohashi K. Expression of HDAC9 in lung cancer–potential role in lung carcinogenesis. Int J Clin Exp Pathol. 2014;7(1):213–20.PubMed
57.
go back to reference Iwasaki Y, Sunaga N, Tomizawa Y, Imai H, Iijima H, Yanagitani N, Horiguchi K, Yamada M, Mori M. Epigenetic inactivation of the thyroid hormone receptor beta1 gene at 3p24.2 in lung cancer. Ann Surg Oncol. 2010;17(8):2222–8.PubMedCrossRef Iwasaki Y, Sunaga N, Tomizawa Y, Imai H, Iijima H, Yanagitani N, Horiguchi K, Yamada M, Mori M. Epigenetic inactivation of the thyroid hormone receptor beta1 gene at 3p24.2 in lung cancer. Ann Surg Oncol. 2010;17(8):2222–8.PubMedCrossRef
58.
go back to reference Lou Z, Lin W, Zhao H, Jiao X, Wang C, Zhao H, Liu L, Liu Y, Xie Q, Huang X, et al. Alkaline phosphatase downregulation promotes lung adenocarcinoma metastasis via the c-Myc/RhoA axis. Cancer Cell Int. 2021;21(1):217.PubMedPubMedCentralCrossRef Lou Z, Lin W, Zhao H, Jiao X, Wang C, Zhao H, Liu L, Liu Y, Xie Q, Huang X, et al. Alkaline phosphatase downregulation promotes lung adenocarcinoma metastasis via the c-Myc/RhoA axis. Cancer Cell Int. 2021;21(1):217.PubMedPubMedCentralCrossRef
59.
go back to reference Zhang X, Zhang R, Liu P, Zhang R, Ning J, Ye Y, Yu W, Yu J. ATP8B1 Knockdown activated the Choline Metabolism Pathway and Induced High-Level Intracellular REDOX Homeostasis in Lung squamous cell carcinoma. Cancers (Basel) 2022, 14(3). Zhang X, Zhang R, Liu P, Zhang R, Ning J, Ye Y, Yu W, Yu J. ATP8B1 Knockdown activated the Choline Metabolism Pathway and Induced High-Level Intracellular REDOX Homeostasis in Lung squamous cell carcinoma. Cancers (Basel) 2022, 14(3).
60.
61.
go back to reference Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18(1):33–50.PubMedCrossRef Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18(1):33–50.PubMedCrossRef
62.
go back to reference Burston HE, Kent OA, Communal L, Udaskin ML, Sun RX, Brown KR, Jung E, Francis KE, La Rose J, Lowitz J et al. Inhibition of relaxin autocrine signaling confers therapeutic vulnerability in ovarian cancer. J Clin Invest 2021, 131(7). Burston HE, Kent OA, Communal L, Udaskin ML, Sun RX, Brown KR, Jung E, Francis KE, La Rose J, Lowitz J et al. Inhibition of relaxin autocrine signaling confers therapeutic vulnerability in ovarian cancer. J Clin Invest 2021, 131(7).
63.
go back to reference Brannan JM, Sen B, Saigal B, Prudkin L, Behrens C, Solis L, Dong W, Bekele BN, Wistuba I, Johnson FM. EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev Res (Phila). 2009;2(12):1039–49.PubMedCrossRef Brannan JM, Sen B, Saigal B, Prudkin L, Behrens C, Solis L, Dong W, Bekele BN, Wistuba I, Johnson FM. EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev Res (Phila). 2009;2(12):1039–49.PubMedCrossRef
64.
go back to reference Zhang T, Liu C, Yu Y, Geng J, Meng Q, Xu S, Zhou F, Chen Y, Jin S, Shen J, et al. TBL1XR1 is involved in c-Met-mediated tumorigenesis of human nonsmall cell lung cancer. Cancer Gene Ther. 2020;27(3–4):136–46.PubMedCrossRef Zhang T, Liu C, Yu Y, Geng J, Meng Q, Xu S, Zhou F, Chen Y, Jin S, Shen J, et al. TBL1XR1 is involved in c-Met-mediated tumorigenesis of human nonsmall cell lung cancer. Cancer Gene Ther. 2020;27(3–4):136–46.PubMedCrossRef
65.
go back to reference Tong Y, Chen X, Feng Z, Xu C, Li Y. Keratin 80 promotes Migration and Invasion of Non-Small Cell Lung Cancer cells by regulating the TGF-beta/SMAD pathway. Evid Based Complement Alternat Med. 2022;2022:2630351.PubMedPubMedCentralCrossRef Tong Y, Chen X, Feng Z, Xu C, Li Y. Keratin 80 promotes Migration and Invasion of Non-Small Cell Lung Cancer cells by regulating the TGF-beta/SMAD pathway. Evid Based Complement Alternat Med. 2022;2022:2630351.PubMedPubMedCentralCrossRef
66.
go back to reference Melese ES, Franks E, Cederberg RA, Harbourne BT, Shi R, Wadsworth BJ, Collier JL, Halvorsen EC, Johnson F, Luu J, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11(1):2010905.PubMedCrossRef Melese ES, Franks E, Cederberg RA, Harbourne BT, Shi R, Wadsworth BJ, Collier JL, Halvorsen EC, Johnson F, Luu J, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11(1):2010905.PubMedCrossRef
67.
go back to reference Wang X, Liu R, Zhu W, Chu H, Yu H, Wei P, Wu X, Zhu H, Gao H, Liang J, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature. 2019;571(7763):127–31.PubMedCrossRef Wang X, Liu R, Zhu W, Chu H, Yu H, Wei P, Wu X, Zhu H, Gao H, Liang J, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis. Nature. 2019;571(7763):127–31.PubMedCrossRef
68.
go back to reference Xing Y, Meng Q, Chen X, Zhao Y, Liu W, Hu J, Xue F, Wang X, Cai L. TRIM44 promotes proliferation and metastasis in non–small cell lung cancer via mTOR signaling pathway. Oncotarget. 2016;7(21):30479–91.PubMedPubMedCentralCrossRef Xing Y, Meng Q, Chen X, Zhao Y, Liu W, Hu J, Xue F, Wang X, Cai L. TRIM44 promotes proliferation and metastasis in non–small cell lung cancer via mTOR signaling pathway. Oncotarget. 2016;7(21):30479–91.PubMedPubMedCentralCrossRef
69.
go back to reference Lin X, Tan S, Fu L, Dong Q. BCAT1 overexpression promotes proliferation, Invasion, and wnt signaling in Non-Small Cell Lung Cancers. Onco Targets Ther. 2020;13:3583–94.PubMedPubMedCentralCrossRef Lin X, Tan S, Fu L, Dong Q. BCAT1 overexpression promotes proliferation, Invasion, and wnt signaling in Non-Small Cell Lung Cancers. Onco Targets Ther. 2020;13:3583–94.PubMedPubMedCentralCrossRef
70.
go back to reference Li F, Yang H, Kong T, Chen S, Li P, Chen L, Cheng J, Cui G, Zhang G. PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-beta (TGF-beta) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis. 2020;11(8):710.PubMedPubMedCentralCrossRef Li F, Yang H, Kong T, Chen S, Li P, Chen L, Cheng J, Cui G, Zhang G. PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-beta (TGF-beta) signaling in the progression of non-small cell lung carcinoma. Cell Death Dis. 2020;11(8):710.PubMedPubMedCentralCrossRef
71.
go back to reference Jin Q, Pan H, Wang B, Wang J, Liu T, Yu X, Jia C, Fang X, Peng Y, Ma X. The PGAM4 gene in non-obstructive azoospermia. Syst Biol Reprod Med. 2013;59(4):179–83.PubMedCrossRef Jin Q, Pan H, Wang B, Wang J, Liu T, Yu X, Jia C, Fang X, Peng Y, Ma X. The PGAM4 gene in non-obstructive azoospermia. Syst Biol Reprod Med. 2013;59(4):179–83.PubMedCrossRef
72.
go back to reference Dierick HA, Mercer JF, Glover TW. A phosphoglycerate mutase brain isoform (PGAM 1) pseudogene is localized within the human Menkes disease gene (ATP7 A). Gene. 1997;198(1–2):37–41.PubMedCrossRef Dierick HA, Mercer JF, Glover TW. A phosphoglycerate mutase brain isoform (PGAM 1) pseudogene is localized within the human Menkes disease gene (ATP7 A). Gene. 1997;198(1–2):37–41.PubMedCrossRef
73.
go back to reference Okuda H, Tsujimura A, Irie S, Yamamoto K, Fukuhara S, Matsuoka Y, Takao T, Miyagawa Y, Nonomura N, Wada M, et al. A single nucleotide polymorphism within the novel sex-linked testis-specific retrotransposed PGAM4 gene influences human male fertility. PLoS ONE. 2012;7(5):e35195.PubMedPubMedCentralCrossRef Okuda H, Tsujimura A, Irie S, Yamamoto K, Fukuhara S, Matsuoka Y, Takao T, Miyagawa Y, Nonomura N, Wada M, et al. A single nucleotide polymorphism within the novel sex-linked testis-specific retrotransposed PGAM4 gene influences human male fertility. PLoS ONE. 2012;7(5):e35195.PubMedPubMedCentralCrossRef
74.
go back to reference Lu B, Nie XH, Yin R, Ding P, Su ZZ, Qiu S, Qian YF. PGAM4 silencing inhibited glycolysis and chemoresistance to temozolomide in glioma cells. Cell Biol Int. 2023;47(4):776–86.PubMedCrossRef Lu B, Nie XH, Yin R, Ding P, Su ZZ, Qiu S, Qian YF. PGAM4 silencing inhibited glycolysis and chemoresistance to temozolomide in glioma cells. Cell Biol Int. 2023;47(4):776–86.PubMedCrossRef
75.
go back to reference He L, Qian X, Ge P, Fan D, Ma X, Wu Q, Sun J, Yang L, Shen J, Xu L. NOL6 regulates the proliferation and apoptosis of gastric Cancer cells via regulating TP53I3, CDK4 and MCM7 expression. Front Oncol. 2022;12:708081.PubMedPubMedCentralCrossRef He L, Qian X, Ge P, Fan D, Ma X, Wu Q, Sun J, Yang L, Shen J, Xu L. NOL6 regulates the proliferation and apoptosis of gastric Cancer cells via regulating TP53I3, CDK4 and MCM7 expression. Front Oncol. 2022;12:708081.PubMedPubMedCentralCrossRef
76.
go back to reference Liang J, Sun W, Song H, Wang C, Li Q, Li C, Wei D, Zhao Y, Li C, Zhang H. NOL6 promotes the proliferation and migration of endometrial cancer cells by regulating TWIST1 expression. Epigenomics. 2021;13(19):1571–85.PubMedCrossRef Liang J, Sun W, Song H, Wang C, Li Q, Li C, Wei D, Zhao Y, Li C, Zhang H. NOL6 promotes the proliferation and migration of endometrial cancer cells by regulating TWIST1 expression. Epigenomics. 2021;13(19):1571–85.PubMedCrossRef
77.
go back to reference Zhao R, Ge Y, Gong Y, Li B, Xiao B, Zuo S. NAP1L5 targeting combined with MYH9 inhibit HCC progression through PI3K/AKT/mTOR signaling pathway. Aging. 2022;14(22):9000–19.PubMedPubMedCentralCrossRef Zhao R, Ge Y, Gong Y, Li B, Xiao B, Zuo S. NAP1L5 targeting combined with MYH9 inhibit HCC progression through PI3K/AKT/mTOR signaling pathway. Aging. 2022;14(22):9000–19.PubMedPubMedCentralCrossRef
78.
go back to reference Ding B, Haidurov A, Chawla A, Parmigiani A, van de Kamp G, Dalina A, Yuan F, Lee JH, Chumakov PM, Grossman SR, et al. p53-inducible SESTRINs might play opposite roles in the regulation of early and late stages of lung carcinogenesis. Oncotarget. 2019;10(65):6997–7009.PubMedPubMedCentralCrossRef Ding B, Haidurov A, Chawla A, Parmigiani A, van de Kamp G, Dalina A, Yuan F, Lee JH, Chumakov PM, Grossman SR, et al. p53-inducible SESTRINs might play opposite roles in the regulation of early and late stages of lung carcinogenesis. Oncotarget. 2019;10(65):6997–7009.PubMedPubMedCentralCrossRef
Metadata
Title
MALAT1-regulated gene expression profiling in lung cancer cell lines
Authors
Jungwook Roh
Boseong Kim
Mijung Im
Wonyi Jang
Yeonsoo Chae
JiHoon Kang
BuHyun Youn
Wanyeon Kim
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11347-7

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine