Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2020

01-05-2020 | NSCLC | Clinical Study

Early experience with hippocampal avoidance whole brain radiation therapy and simultaneous integrated boost for brain metastases

Authors: Emily S. Lebow, William L. Hwang, Stephen Zieminski, Yi Wang, Andrzej Niemierko, William A. Mehan Jr, Kevin S. Oh, Melin Khandekar, Henning Willers, Helen A. Shih

Published in: Journal of Neuro-Oncology | Issue 1/2020

Login to get access

Abstract

Purpose

Cranial irradiation results in cognitive decline, which is hypothesized to be partially attributable to hippocampal injury and stem cell loss. Recent advances allow for targeted reduction of radiation dose to the hippocampi while maintaining adequate dose coverage to the brain parenchyma and additional increasing dose to brain metastases, a approach called hippocampal avoidance whole brain radiation therapy with a simultaneous integrated boost (HA-WBRT + SIB.) We review our early clinical experience with HA-WBRT + SIB.

Materials and methods

We evaluated treatments and clinical outcomes for patients treated with HA-WBRT + SIB between 2014 and 2018.

Results

A total of 32 patients (median age, 63.5 years, range 45.3–78.8 years) completed HA-WBRT + SIB. Median follow-up for patients alive at the time of analysis was 11.3 months. The most common histology was non-small cell lung cancer (n = 22). Most patients (n = 25) were prescribed with WBRT dose of 30 Gy with SIB to 37.5 Gy in 15 fractions. Volumetric modulated arc therapy reduced treatment time (p < 0.0001). Median freedom from intracranial progression and overall survival from completion of treatment were 11.4 months and 19.6 months, respectively. Karnofsky Performance Status was associated with improved survival (p = 0.008). The most common toxicities were alopecia, fatigue, and nausea. Five patients developed cognitive impairment, including grade 1 (n = 3), grade 2 (n = 1), and grade 3 (n = 1).

Conclusion

HA-WBRT + SIB demonstrated durable intracranial disease control with modest side effects and merits further investigation as a means of WBRT toxicity reduction while improving long-term locoregional control in the brain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54PubMed Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54PubMed
2.
go back to reference Sperduto PW et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 3(6):827–831PubMed Sperduto PW et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 3(6):827–831PubMed
3.
go back to reference Sperduto PW et al (2017) Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers (Melanoma-molGPA). Int J Radiat Oncol Biol Phys 99(4):812–816PubMedPubMedCentral Sperduto PW et al (2017) Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers (Melanoma-molGPA). Int J Radiat Oncol Biol Phys 99(4):812–816PubMedPubMedCentral
4.
go back to reference Goldberg SB et al (2016) Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 17(7):976–983PubMedPubMedCentral Goldberg SB et al (2016) Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 17(7):976–983PubMedPubMedCentral
5.
go back to reference Rulli E et al (2019) The impact of targeted therapies and immunotherapy in melanoma brain metastases: a systematic review and meta-analysis. Cancer 125(21):3776–3789PubMed Rulli E et al (2019) The impact of targeted therapies and immunotherapy in melanoma brain metastases: a systematic review and meta-analysis. Cancer 125(21):3776–3789PubMed
6.
go back to reference Edwards J, Randall ME, McGarry RC (2017) Reports on the death of whole brain radiation therapy are greatly exaggerated. Int J Radiat Oncol Biol Phys 99(5):1067–1070PubMed Edwards J, Randall ME, McGarry RC (2017) Reports on the death of whole brain radiation therapy are greatly exaggerated. Int J Radiat Oncol Biol Phys 99(5):1067–1070PubMed
7.
go back to reference Aoyama H et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68(5):1388–1395PubMed Aoyama H et al (2007) Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys 68(5):1388–1395PubMed
8.
go back to reference Brown PD et al (2016) Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316(4):401–409PubMedPubMedCentral Brown PD et al (2016) Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316(4):401–409PubMedPubMedCentral
9.
go back to reference Chang EL et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10(11):1037–1044PubMed Chang EL et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10(11):1037–1044PubMed
10.
go back to reference Sun A et al (2011) Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol 29(3):279–286PubMed Sun A et al (2011) Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol 29(3):279–286PubMed
11.
go back to reference DeAngelis LM, Delattre JY, Posner JB (1989) Radiation-induced dementia in patients cured of brain metastases. Neurology 39(6):789–796PubMed DeAngelis LM, Delattre JY, Posner JB (1989) Radiation-induced dementia in patients cured of brain metastases. Neurology 39(6):789–796PubMed
12.
go back to reference Monaco EA 3rd et al (2013) Leukoencephalopathy after whole-brain radiation therapy plus radiosurgery versus radiosurgery alone for metastatic lung cancer. Cancer 119(1):226–232PubMed Monaco EA 3rd et al (2013) Leukoencephalopathy after whole-brain radiation therapy plus radiosurgery versus radiosurgery alone for metastatic lung cancer. Cancer 119(1):226–232PubMed
13.
14.
go back to reference Monje ML et al (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8(9):955–962PubMed Monje ML et al (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8(9):955–962PubMed
15.
go back to reference Meyers CA et al (2000) Neurocognitive effects of therapeutic irradiation for base of skull tumors. Int J Radiat Oncol Biol Phys 46(1):51–55PubMed Meyers CA et al (2000) Neurocognitive effects of therapeutic irradiation for base of skull tumors. Int J Radiat Oncol Biol Phys 46(1):51–55PubMed
16.
go back to reference Grattan-Smith PJ et al (1992) Neuropsychological abnormalities in patients with pituitary tumours. Acta Neurol Scand 86(6):626–631PubMed Grattan-Smith PJ et al (1992) Neuropsychological abnormalities in patients with pituitary tumours. Acta Neurol Scand 86(6):626–631PubMed
17.
go back to reference Gondi V et al (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85(2):348–354PubMed Gondi V et al (2013) Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys 85(2):348–354PubMed
18.
go back to reference Oehlke O et al (2015) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: local tumour control and survival. Strahlenther Onkol 191(6):461–469PubMed Oehlke O et al (2015) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: local tumour control and survival. Strahlenther Onkol 191(6):461–469PubMed
19.
go back to reference Gondi V et al (2019) NRG oncology CC001: a phase III trial of hippocampal avoidance (HA) in addition to whole-brain radiotherapy (WBRT) plus memantine to preserve neurocognitive function (NCF) in patients with brain metastases (BM). J Clin Oncol 37(15_suppl):2009–2009 Gondi V et al (2019) NRG oncology CC001: a phase III trial of hippocampal avoidance (HA) in addition to whole-brain radiotherapy (WBRT) plus memantine to preserve neurocognitive function (NCF) in patients with brain metastases (BM). J Clin Oncol 37(15_suppl):2009–2009
20.
go back to reference Hsu F et al (2010) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 76(5):1480–1485PubMed Hsu F et al (2010) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 76(5):1480–1485PubMed
21.
go back to reference Giaj Levra N et al (2016) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for brain metastases: a dosimetric volumetric-modulated arc therapy study. Radiol Med 121(1):60–69PubMed Giaj Levra N et al (2016) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for brain metastases: a dosimetric volumetric-modulated arc therapy study. Radiol Med 121(1):60–69PubMed
22.
go back to reference Prokic V et al (2013) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys 85(1):264–270PubMed Prokic V et al (2013) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys 85(1):264–270PubMed
23.
go back to reference Gutierrez AN et al (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69(2):589–597PubMedPubMedCentral Gutierrez AN et al (2007) Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 69(2):589–597PubMedPubMedCentral
24.
go back to reference Pokhrel D et al (2016) Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy. Med Dosim 41(4):315–322PubMed Pokhrel D et al (2016) Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy. Med Dosim 41(4):315–322PubMed
25.
go back to reference Tomita N et al (2008) Helical tomotherapy for brain metastases: dosimetric evaluation of treatment plans and early clinical results. Technol Cancer Res Treat 7(6):417–424PubMed Tomita N et al (2008) Helical tomotherapy for brain metastases: dosimetric evaluation of treatment plans and early clinical results. Technol Cancer Res Treat 7(6):417–424PubMed
26.
go back to reference Scoccianti S et al (2015) Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist's guide for delineation in everyday practice. Radiother Oncol 114(2):230–238PubMed Scoccianti S et al (2015) Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist's guide for delineation in everyday practice. Radiother Oncol 114(2):230–238PubMed
28.
go back to reference Gondi V et al (2010) Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol 95(3):327–331PubMedPubMedCentral Gondi V et al (2010) Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol 95(3):327–331PubMedPubMedCentral
29.
go back to reference Harth S et al (2013) Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiother Oncol 109(1):152–158PubMed Harth S et al (2013) Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiother Oncol 109(1):152–158PubMed
30.
go back to reference Gondi V et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol 32(34):3810–3816PubMedPubMedCentral Gondi V et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol 32(34):3810–3816PubMedPubMedCentral
31.
go back to reference Awad R et al (2013) Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases—the first Australian experience. Radiat Oncol 8:62PubMedPubMedCentral Awad R et al (2013) Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases—the first Australian experience. Radiat Oncol 8:62PubMedPubMedCentral
32.
go back to reference Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70(5):1350–1360PubMed Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70(5):1350–1360PubMed
33.
go back to reference Chao ST et al (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87(3):449–457PubMed Chao ST et al (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87(3):449–457PubMed
34.
go back to reference Cozzi L et al (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89(2):180–191PubMed Cozzi L et al (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89(2):180–191PubMed
35.
go back to reference Palma D et al (2008) Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 72(4):996–1001PubMed Palma D et al (2008) Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 72(4):996–1001PubMed
36.
go back to reference Fogarty GB et al (2011) Volumetric modulated arc therapy is superior to conventional intensity modulated radiotherapy–a comparison among prostate cancer patients treated in an Australian centre. Radiat Oncol 6:108PubMedPubMedCentral Fogarty GB et al (2011) Volumetric modulated arc therapy is superior to conventional intensity modulated radiotherapy–a comparison among prostate cancer patients treated in an Australian centre. Radiat Oncol 6:108PubMedPubMedCentral
37.
go back to reference Tsao MN et al (2018) Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst Rev 1:CD003869PubMed Tsao MN et al (2018) Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst Rev 1:CD003869PubMed
38.
go back to reference Brown PD et al (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 15(10):1429–1437PubMedPubMedCentral Brown PD et al (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 15(10):1429–1437PubMedPubMedCentral
39.
go back to reference Gondi V (2018) Preservation of neurocognitive function with conformal avoidance of the hippocampus during whole-brain radiotherapy for brain metastases: preliminary results of phase III trial NRG oncology CC001. Int J Radiat Oncol Biol Phys 102(5):1607 Gondi V (2018) Preservation of neurocognitive function with conformal avoidance of the hippocampus during whole-brain radiotherapy for brain metastases: preliminary results of phase III trial NRG oncology CC001. Int J Radiat Oncol Biol Phys 102(5):1607
40.
41.
go back to reference Makale MT et al (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13(1):52–64PubMed Makale MT et al (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 13(1):52–64PubMed
42.
go back to reference Peiffer AM et al (2013) Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology 80(8):747–753PubMedPubMedCentral Peiffer AM et al (2013) Neuroanatomical target theory as a predictive model for radiation-induced cognitive decline. Neurology 80(8):747–753PubMedPubMedCentral
43.
go back to reference Zieminski S, Khandekar M, Wang Y (2018) Assessment of multi-criteria optimization (MCO) for volumetric modulated arc therapy (VMAT) in hippocampal avoidance whole brain radiation therapy (HA-WBRT). J Appl Clin Med Phys 19(2):184–190PubMedPubMedCentral Zieminski S, Khandekar M, Wang Y (2018) Assessment of multi-criteria optimization (MCO) for volumetric modulated arc therapy (VMAT) in hippocampal avoidance whole brain radiation therapy (HA-WBRT). J Appl Clin Med Phys 19(2):184–190PubMedPubMedCentral
44.
go back to reference Craft DL et al (2012) Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 82(1):e83–90PubMed Craft DL et al (2012) Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 82(1):e83–90PubMed
45.
go back to reference McGarry CK et al (2014) Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning. Med Dosim 39(3):205–211PubMed McGarry CK et al (2014) Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning. Med Dosim 39(3):205–211PubMed
46.
go back to reference Kierkels RG et al (2015) Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy. Radiat Oncol 10:87PubMedPubMedCentral Kierkels RG et al (2015) Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy. Radiat Oncol 10:87PubMedPubMedCentral
47.
go back to reference Thieke C et al (2007) A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol 85(2):292–298PubMed Thieke C et al (2007) A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol 85(2):292–298PubMed
48.
go back to reference Muller BS et al (2017) Multicriteria plan optimization in the hands of physicians: a pilot study in prostate cancer and brain tumors. Radiat Oncol 12(1):168PubMedPubMedCentral Muller BS et al (2017) Multicriteria plan optimization in the hands of physicians: a pilot study in prostate cancer and brain tumors. Radiat Oncol 12(1):168PubMedPubMedCentral
Metadata
Title
Early experience with hippocampal avoidance whole brain radiation therapy and simultaneous integrated boost for brain metastases
Authors
Emily S. Lebow
William L. Hwang
Stephen Zieminski
Yi Wang
Andrzej Niemierko
William A. Mehan Jr
Kevin S. Oh
Melin Khandekar
Henning Willers
Helen A. Shih
Publication date
01-05-2020
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2020
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-020-03491-y

Other articles of this Issue 1/2020

Journal of Neuro-Oncology 1/2020 Go to the issue