Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | NSCLC | Research

Whole genome copy number analyses reveal a highly aberrant genome in TP53 mutant lung adenocarcinoma tumors

Authors: Maria Moksnes Bjaanæs, Gro Nilsen, Ann Rita Halvorsen, Hege G. Russnes, Steinar Solberg, Lars Jørgensen, Odd Terje Brustugun, Ole Christian Lingjærde, Åslaug Helland

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Genetic alterations are common in non-small cell lung cancer (NSCLC), and DNA mutations and translocations are targets for therapy. Copy number aberrations occur frequently in NSCLC tumors and may influence gene expression and further alter signaling pathways. In this study we aimed to characterize the genomic architecture of NSCLC tumors and to identify genomic differences between tumors stratified by histology and mutation status. Furthermore, we sought to integrate DNA copy number data with mRNA expression to find genes with expression putatively regulated by copy number aberrations and the oncogenic pathways associated with these affected genes.

Methods

Copy number data were obtained from 190 resected early-stage NSCLC tumors and gene expression data were available from 113 of the adenocarcinomas. Clinical and histopathological data were known, and EGFR-, KRAS- and TP53 mutation status was determined. Allele-specific copy number profiles were calculated using ASCAT, and regional copy number aberration were subsequently obtained and analyzed jointly with the gene expression data.

Results

The NSCLC tumors tissue displayed overall complex DNA copy number profiles with numerous recurrent aberrations. Despite histological differences, tissue samples from squamous cell carcinomas and adenocarcinomas had remarkably similar copy number patterns. The TP53-mutated lung adenocarcinomas displayed a highly aberrant genome, with significantly altered copy number profiles including gains, losses and focal complex events. The EGFR-mutant lung adenocarcinomas had specific arm-wise aberrations particularly at chromosome7p and 9q. A large number of genes displayed correlation between copy number and expression level, and the PI(3)K-mTOR pathway was highly enriched for such genes.

Conclusions

The genomic architecture in NSCLC tumors is complex, and particularly TP53-mutated lung adenocarcinomas displayed highly aberrant copy number profiles. We suggest to always include TP53-mutation status when studying copy number aberrations in NSCLC tumors. Copy number may further impact gene expression and alter cellular signaling pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre L, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef Torre L, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRef
3.
go back to reference Planchard D, Popat S, Kerr K, Novello S, Smit E., Faivre-Finn C, et al. Metastatic non-small cell lung cancer : ESMO Clinical Practice Guidelines for diagnosis , treatment Clinical Practice Guidelines. 2019;29 October 2018. Planchard D, Popat S, Kerr K, Novello S, Smit E., Faivre-Finn C, et al. Metastatic non-small cell lung cancer : ESMO Clinical Practice Guidelines for diagnosis , treatment Clinical Practice Guidelines. 2019;29 October 2018.
4.
go back to reference Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.CrossRef Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.CrossRef
5.
go back to reference Halvorsen AR, Silwal-Pandit L, Meza-Zepeda LA, Vodak D, Vu P, Sagerup C, et al. TP53 mutation spectrum in smokers and never smoking lung cancer patients. Front Genet. 2016;7:85 may:1–10.CrossRef Halvorsen AR, Silwal-Pandit L, Meza-Zepeda LA, Vodak D, Vu P, Sagerup C, et al. TP53 mutation spectrum in smokers and never smoking lung cancer patients. Front Genet. 2016;7:85 may:1–10.CrossRef
9.
go back to reference Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.CrossRef Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.CrossRef
12.
go back to reference Vollan HKM, Rueda OM, Chin S, Turashvili G, Shah S, Lingjærde OC, et al. A tumor DNA complexity index is an independent predictor of survival in breast and ovarian cancer. Mol Oncol. 2014;9:1–39. Vollan HKM, Rueda OM, Chin S, Turashvili G, Shah S, Lingjærde OC, et al. A tumor DNA complexity index is an independent predictor of survival in breast and ovarian cancer. Mol Oncol. 2014;9:1–39.
13.
go back to reference Blons H, Pallier K, Le Corre D, Danel C, Tremblay-Gravel M, Houdayer C, et al. Genome wide SNP comparative analysis between EGFR and KRAS mutated NSCLC and characterization of two models of oncogenic cooperation in non-small cell lung carcinoma. BMC Med Genet. 2008;1:1–25. doi:1755-8794-1-25 [pii]. https://doi.org/10.1186/1755-8794-1-25.CrossRef Blons H, Pallier K, Le Corre D, Danel C, Tremblay-Gravel M, Houdayer C, et al. Genome wide SNP comparative analysis between EGFR and KRAS mutated NSCLC and characterization of two models of oncogenic cooperation in non-small cell lung carcinoma. BMC Med Genet. 2008;1:1–25. doi:1755-8794-1-25 [pii]. https://​doi.​org/​10.​1186/​1755-8794-1-25.CrossRef
14.
go back to reference Fong Y, Lin Y-S, Liou C-P, Li C-F, Tzeng C-C. Chromosomal imbalances in lung adenocarcinomas with or without mutations in the epidermal growth factor receptor gene. Respirology. 2010;15:700–5.CrossRef Fong Y, Lin Y-S, Liou C-P, Li C-F, Tzeng C-C. Chromosomal imbalances in lung adenocarcinomas with or without mutations in the epidermal growth factor receptor gene. Respirology. 2010;15:700–5.CrossRef
16.
go back to reference Shao X, Lv N, Liao J, Long J, Xue R, Ai N, et al. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet. 2019;20:1–14.CrossRef Shao X, Lv N, Liao J, Long J, Xue R, Ai N, et al. Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet. 2019;20:1–14.CrossRef
17.
go back to reference Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol. 2010;4:67.CrossRef Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC Syst Biol. 2010;4:67.CrossRef
22.
go back to reference Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al. PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–74.CrossRef Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al. PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17:1665–74.CrossRef
23.
go back to reference The Wellcome Trust Case Control Consortium*. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.CrossRef The Wellcome Trust Case Control Consortium*. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.CrossRef
26.
go back to reference Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, et al. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res. 2008;36:1–12.CrossRef Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H, et al. Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms. Nucleic Acids Res. 2008;36:1–12.CrossRef
29.
go back to reference Pladsen AV, Nilsen G, Rueda OM, Aure MR, Borgan Ø, Liestøl K, et al. DNA copy number motifs are strong and independent predictors of survival in breast cancer. Commun Biol. 2020;3:1–9.CrossRef Pladsen AV, Nilsen G, Rueda OM, Aure MR, Borgan Ø, Liestøl K, et al. DNA copy number motifs are strong and independent predictors of survival in breast cancer. Commun Biol. 2020;3:1–9.CrossRef
31.
go back to reference Han X, Tan Q, Yang S, Li J, Xu J, Hao X, et al. Comprehensive Profiling of Gene Copy Number Alterations Predicts Patient Prognosis in Resected Stages I–III Lung Adenocarcinoma. Front Oncol. 2019;9:1–10.CrossRef Han X, Tan Q, Yang S, Li J, Xu J, Hao X, et al. Comprehensive Profiling of Gene Copy Number Alterations Predicts Patient Prognosis in Resected Stages I–III Lung Adenocarcinoma. Front Oncol. 2019;9:1–10.CrossRef
32.
go back to reference Broët P, Camilleri-Broët S, Zhang S, Alifano M, Bangarusamy D, Battistella M, et al. Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: implications for chemotherapy selection. Cancer Res. 2009;69:1055–62.CrossRef Broët P, Camilleri-Broët S, Zhang S, Alifano M, Bangarusamy D, Battistella M, et al. Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: implications for chemotherapy selection. Cancer Res. 2009;69:1055–62.CrossRef
36.
go back to reference Czubak K, Lewandowska MA, Klonowska K, Kowalewski J, Figlerowicz M, Kozlowski P. High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget. 2015;6:23399–416.CrossRef Czubak K, Lewandowska MA, Klonowska K, Kowalewski J, Figlerowicz M, Kozlowski P. High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget. 2015;6:23399–416.CrossRef
38.
go back to reference Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell. 2018;33:676–689.e3.CrossRef Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, et al. Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell. 2018;33:676–689.e3.CrossRef
40.
go back to reference Silwal-Pandit L, Vollan HKM, Chin SF, Rueda OM, McKinney S, Osako T, et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res. 2014;20:3569–80.CrossRef Silwal-Pandit L, Vollan HKM, Chin SF, Rueda OM, McKinney S, Osako T, et al. TP53 mutation spectrum in breast cancer is subtype specific and has distinct prognostic relevance. Clin Cancer Res. 2014;20:3569–80.CrossRef
41.
go back to reference Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.CrossRef Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.CrossRef
43.
go back to reference Shepherd FA, Pereira JR, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non–small-cell lung Cancer. N Engl J Med. 2005;353:123–32.CrossRef Shepherd FA, Pereira JR, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non–small-cell lung Cancer. N Engl J Med. 2005;353:123–32.CrossRef
44.
go back to reference Hirsch FR. Varella-Garcia M, Bunn P a, Di Maria M V, Veve R, Bremmes RM, et al. epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.CrossRef Hirsch FR. Varella-Garcia M, Bunn P a, Di Maria M V, Veve R, Bremmes RM, et al. epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.CrossRef
47.
go back to reference Planck M, Edlund K, Botling J, Micke P, Isaksson S, Staaf J. Genomic and transcriptional alterations in lung adenocarcinoma in relation to EGFR and KRAS mutation status. PLoS One. 2013;8:1–14.CrossRef Planck M, Edlund K, Botling J, Micke P, Isaksson S, Staaf J. Genomic and transcriptional alterations in lung adenocarcinoma in relation to EGFR and KRAS mutation status. PLoS One. 2013;8:1–14.CrossRef
49.
go back to reference Heidenblad M, Lindgren D. Veltman J a, Jonson T, Mahlamäki EH, Gorunova L, et al. microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene. 2005;24:1794–801.CrossRef Heidenblad M, Lindgren D. Veltman J a, Jonson T, Mahlamäki EH, Gorunova L, et al. microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene. 2005;24:1794–801.CrossRef
52.
go back to reference Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alpha or both for advanced renal cell carcinoma. N Engl J Med. 2007;356:2271–81.CrossRef Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alpha or both for advanced renal cell carcinoma. N Engl J Med. 2007;356:2271–81.CrossRef
55.
go back to reference Ekman S, Wynes MW, Hirsch FR. The mTOR pathway in lung Cancer and implications for therapy and biomarker analysis. J Thorac Oncol. 2012;7:947–53.CrossRef Ekman S, Wynes MW, Hirsch FR. The mTOR pathway in lung Cancer and implications for therapy and biomarker analysis. J Thorac Oncol. 2012;7:947–53.CrossRef
56.
go back to reference Jensen TJ, Goodman AM, Kato S, Ellison CK, Daniels GA, Kim L, et al. Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in Cancer patients. Mol Cancer Ther. 2018;18:448–58.CrossRef Jensen TJ, Goodman AM, Kato S, Ellison CK, Daniels GA, Kim L, et al. Genome-wide sequencing of cell-free DNA identifies copy-number alterations that can be used for monitoring response to immunotherapy in Cancer patients. Mol Cancer Ther. 2018;18:448–58.CrossRef
Metadata
Title
Whole genome copy number analyses reveal a highly aberrant genome in TP53 mutant lung adenocarcinoma tumors
Authors
Maria Moksnes Bjaanæs
Gro Nilsen
Ann Rita Halvorsen
Hege G. Russnes
Steinar Solberg
Lars Jørgensen
Odd Terje Brustugun
Ole Christian Lingjærde
Åslaug Helland
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-08811-7

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine