Skip to main content
Top
Published in: neurogenetics 2/2013

01-05-2013 | Short Communication

Novel TTC19 mutation in a family with severe psychiatric manifestations and complex III deficiency

Authors: Célia Nogueira, José Barros, Maria José Sá, Luísa Azevedo, Ricardo Taipa, Alessandra Torraco, Maria Chiara Meschini, Daniela Verrigni, Claudia Nesti, Teresa Rizza, João Teixeira, Rosalba Carrozzo, Manuel Melo Pires, Laura Vilarinho, Filippo M. Santorelli

Published in: Neurogenetics | Issue 2/2013

Login to get access

Abstract

Complex III of the mitochondrial respiratory chain (CIII) catalyzes transfer of electrons from reduced coenzyme Q to cytochrome c. Low biochemical activity of CIII is not a frequent etiology in disorders of oxidative metabolism and is genetically heterogeneous. Recently, mutations in the human tetratricopeptide 19 gene (TTC19) have been involved in the etiology of CIII deficiency through impaired assembly of the holocomplex. We investigated a consanguineous Portuguese family where four siblings had reduced enzymatic activity of CIII in muscle and harbored a novel homozygous mutation in TTC19. The clinical phenotype in the four sibs was consistent with severe olivo–ponto–cerebellar atrophy, although their age at onset differed slightly. Interestingly, three patients also presented progressive psychosis. The mutation resulted in almost complete absence of TTC19 protein, defective assembly of CIII in muscle, and enhanced production of reactive oxygen species in cultured skin fibroblasts. Our findings add to the array of mutations in TTC19, corroborate the notion of genotype/phenotype variability in mitochondrial encephalomyopathies even within a single family, and indicate that psychiatric manifestations are a further presentation of low CIII.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anheim M, Tranchant C, Koenig M (2012) The autosomal recessive cerebellar ataxias. N Engl J Med 366:636–646PubMedCrossRef Anheim M, Tranchant C, Koenig M (2012) The autosomal recessive cerebellar ataxias. N Engl J Med 366:636–646PubMedCrossRef
2.
go back to reference Fogel BL, Perlman S (2007) Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 6:245–257PubMedCrossRef Fogel BL, Perlman S (2007) Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 6:245–257PubMedCrossRef
3.
go back to reference Vermeer S, van de Warrenburg BP, Willemsen MA, Cluitmans M, Scheffer H, Kremer BP, Knoers NV (2011) Autosomal recessive cerebellar ataxias: the current state of affairs. J Med Genet 48:651–659PubMedCrossRef Vermeer S, van de Warrenburg BP, Willemsen MA, Cluitmans M, Scheffer H, Kremer BP, Knoers NV (2011) Autosomal recessive cerebellar ataxias: the current state of affairs. J Med Genet 48:651–659PubMedCrossRef
4.
go back to reference Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71PubMedCrossRef Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71PubMedCrossRef
5.
go back to reference Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D’Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263PubMedCrossRef Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, D’Adamo P, Diodato D, Costa R, Mariotti C, Uziel G, Smiderle C, Zeviani M (2011) Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet 43:259–263PubMedCrossRef
6.
go back to reference DiMauro S, Garone C (2010) Historical perspective on mitochondrial medicine. Dev Disabil Res Rev 16:106–113PubMedCrossRef DiMauro S, Garone C (2010) Historical perspective on mitochondrial medicine. Dev Disabil Res Rev 16:106–113PubMedCrossRef
7.
go back to reference Bénit P, Lebon S, Rustin P (2009) Respiratory-chain diseases related to complex III deficiency. Biochim Biophys Acta 1793:181–185PubMedCrossRef Bénit P, Lebon S, Rustin P (2009) Respiratory-chain diseases related to complex III deficiency. Biochim Biophys Acta 1793:181–185PubMedCrossRef
8.
go back to reference DiMauro S, Hirano (2005) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15:276–286PubMedCrossRef DiMauro S, Hirano (2005) Mitochondrial encephalomyopathies: an update. Neuromuscul Disord 15:276–286PubMedCrossRef
9.
go back to reference Bugiani M, Invernizzi F, Alberio S, Briem E, Lamantea E, Carrara F, Moroni I, Farina L, Spada M, Donati MA, Uziel G, Zeviani M (2004) Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659:136–147PubMedCrossRef Bugiani M, Invernizzi F, Alberio S, Briem E, Lamantea E, Carrara F, Moroni I, Farina L, Spada M, Donati MA, Uziel G, Zeviani M (2004) Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659:136–147PubMedCrossRef
10.
go back to reference Ferreira M, Torraco A, Rizza T, Fattori F, Meschini MC, Castana C, Go NE, Nargang FE, Duarte M, Piemonte F, Dionisi-Vici C, Videira A, Vilarinho L, Santorelli FM, Carrozzo R, Bertini E (2011) Progressive cavitating leukoencephalopathy associated with respiratory chain complex I deficiency and a novel mutation in NDUFS1. Neurogenetics 12:9–17PubMedCrossRef Ferreira M, Torraco A, Rizza T, Fattori F, Meschini MC, Castana C, Go NE, Nargang FE, Duarte M, Piemonte F, Dionisi-Vici C, Videira A, Vilarinho L, Santorelli FM, Carrozzo R, Bertini E (2011) Progressive cavitating leukoencephalopathy associated with respiratory chain complex I deficiency and a novel mutation in NDUFS1. Neurogenetics 12:9–17PubMedCrossRef
11.
go back to reference Nijtmans LG, Henderson NS, Holt IJ (2002) Blue native electrophoresis to study mitochondrial and other protein complexes. Methods 26:327–334PubMedCrossRef Nijtmans LG, Henderson NS, Holt IJ (2002) Blue native electrophoresis to study mitochondrial and other protein complexes. Methods 26:327–334PubMedCrossRef
12.
go back to reference Schagger H (1996) Electrophoretic techniques for isolation and quantification of oxidative phosphorylation complexes from human tissues. Methods Enzymol 264:555–566PubMedCrossRef Schagger H (1996) Electrophoretic techniques for isolation and quantification of oxidative phosphorylation complexes from human tissues. Methods Enzymol 264:555–566PubMedCrossRef
13.
go back to reference Blakely E, He L, Gardner JL, Hudson G, Walter J, Hughes I, Turnbull DM, Taylor RW (2008) Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscul Disord 18:557–560PubMedCrossRef Blakely E, He L, Gardner JL, Hudson G, Walter J, Hughes I, Turnbull DM, Taylor RW (2008) Novel mutations in the TK2 gene associated with fatal mitochondrial DNA depletion myopathy. Neuromuscul Disord 18:557–560PubMedCrossRef
14.
go back to reference Embiruçu EK, Martyn ML, Schlesinger D, Kok F (2009) Autosomal recessive ataxias: 20 types, and counting. Arq Neuropsiquiatr 67:1143–1156PubMedCrossRef Embiruçu EK, Martyn ML, Schlesinger D, Kok F (2009) Autosomal recessive ataxias: 20 types, and counting. Arq Neuropsiquiatr 67:1143–1156PubMedCrossRef
15.
go back to reference Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894PubMedCrossRef Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894PubMedCrossRef
16.
go back to reference Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528PubMedCrossRef Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528PubMedCrossRef
17.
go back to reference Huang S, Ling JJ, Yang S, Li XJ, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 134:1943–1958PubMedCrossRef Huang S, Ling JJ, Yang S, Li XJ, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 134:1943–1958PubMedCrossRef
18.
go back to reference Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939PubMedCrossRef Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932–939PubMedCrossRef
19.
go back to reference Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13:878–890PubMedCrossRef Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13:878–890PubMedCrossRef
20.
go back to reference Anglin RE, Mazurek MF, Tarnopolsky MA, Rosebush PI (2012) The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 159B:749–759PubMedCrossRef Anglin RE, Mazurek MF, Tarnopolsky MA, Rosebush PI (2012) The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 159B:749–759PubMedCrossRef
21.
go back to reference Ghezzi D, Zeviani M (2012) Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106PubMedCrossRef Ghezzi D, Zeviani M (2012) Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 748:65–106PubMedCrossRef
22.
go back to reference Diaz F, Garcia S, Padgett KR, Moraes CT (2012) A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum Mol Genet 21:5066–5077PubMedCrossRef Diaz F, Garcia S, Padgett KR, Moraes CT (2012) A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum Mol Genet 21:5066–5077PubMedCrossRef
Metadata
Title
Novel TTC19 mutation in a family with severe psychiatric manifestations and complex III deficiency
Authors
Célia Nogueira
José Barros
Maria José Sá
Luísa Azevedo
Ricardo Taipa
Alessandra Torraco
Maria Chiara Meschini
Daniela Verrigni
Claudia Nesti
Teresa Rizza
João Teixeira
Rosalba Carrozzo
Manuel Melo Pires
Laura Vilarinho
Filippo M. Santorelli
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Neurogenetics / Issue 2/2013
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-013-0361-1

Other articles of this Issue 2/2013

neurogenetics 2/2013 Go to the issue