Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2010

Open Access 01-12-2010 | Review

Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

Authors: Catherine K Kuo, Joseph E Marturano, Rocky S Tuan

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2010

Login to get access

Abstract

Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics critical for design parameters and outcome measures, and introduce synthetic and naturally-derived biomaterials used in tendon/ligament scaffolds. We will describe applications of these biomaterials in advanced tendon/ligament engineering strategies including the utility of scaffold functionalization, cyclic strain, growth factors, and interface considerations. The goal of this review is to compile and interpret the important findings of recent tendon/ligament engineering research in an effort towards the advancement of regenerative strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lowry OH, Gilligan DR, Katersky EM: The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species. J Biol Chem. 1941, 139: 795-804. Lowry OH, Gilligan DR, Katersky EM: The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species. J Biol Chem. 1941, 139: 795-804.
2.
go back to reference Nakagawa H, Mikawa Y, Watanabe R: Elastin in the human posterior longitudinal ligament and spinal dura: A histologic and biochemical study. Spine. 1994, 19: 2164-2169. 10.1097/00007632-199410000-00006.CrossRefPubMed Nakagawa H, Mikawa Y, Watanabe R: Elastin in the human posterior longitudinal ligament and spinal dura: A histologic and biochemical study. Spine. 1994, 19: 2164-2169. 10.1097/00007632-199410000-00006.CrossRefPubMed
3.
go back to reference Gineyts E, Cloos PAC, Borel O, Grimaud L, Delmas PD, Garnero P: Racemization and isomerisation of type I collagen C-telopeptides in human bone and soft tissues: assessment of tissue turnover. Biochem J. 2000, 345: 481-485. 10.1042/0264-6021:3450481.CrossRefPubMedPubMedCentral Gineyts E, Cloos PAC, Borel O, Grimaud L, Delmas PD, Garnero P: Racemization and isomerisation of type I collagen C-telopeptides in human bone and soft tissues: assessment of tissue turnover. Biochem J. 2000, 345: 481-485. 10.1042/0264-6021:3450481.CrossRefPubMedPubMedCentral
4.
go back to reference McBride DJ, Trelstad RL, Silver FH: Structural and mechanical assessment of developing chick tendon. Int J Biol Macromol. 1988, 10: 194-200. 10.1016/0141-8130(88)90048-7.CrossRef McBride DJ, Trelstad RL, Silver FH: Structural and mechanical assessment of developing chick tendon. Int J Biol Macromol. 1988, 10: 194-200. 10.1016/0141-8130(88)90048-7.CrossRef
5.
go back to reference Silver FH, Freeman JW, Seehra GP: Collagen self-assembly and the development of tendon mechanical properties. J Biomech. 2003, 36: 1529-1553. 10.1016/S0021-9290(03)00135-0.CrossRefPubMed Silver FH, Freeman JW, Seehra GP: Collagen self-assembly and the development of tendon mechanical properties. J Biomech. 2003, 36: 1529-1553. 10.1016/S0021-9290(03)00135-0.CrossRefPubMed
6.
go back to reference Raspanti M, Congiu T, Guizzardi S: Structural aspects of the extracellular matrix of the tendon: An atomic force and scanning electron microscopy study. Arch Histol Cytol. 2002, 65: 37-43. 10.1679/aohc.65.37.CrossRefPubMed Raspanti M, Congiu T, Guizzardi S: Structural aspects of the extracellular matrix of the tendon: An atomic force and scanning electron microscopy study. Arch Histol Cytol. 2002, 65: 37-43. 10.1679/aohc.65.37.CrossRefPubMed
7.
go back to reference Kjær M: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004, 84: 649-698. 10.1152/physrev.00031.2003.CrossRefPubMed Kjær M: Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004, 84: 649-698. 10.1152/physrev.00031.2003.CrossRefPubMed
8.
go back to reference Robinson PS, Huang TF, Kazam E, Iozzo RV, Birk DE, Soslowsky LJ: Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J Biomech Eng. 2005, 127: 181-185. 10.1115/1.1835363.CrossRefPubMed Robinson PS, Huang TF, Kazam E, Iozzo RV, Birk DE, Soslowsky LJ: Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J Biomech Eng. 2005, 127: 181-185. 10.1115/1.1835363.CrossRefPubMed
9.
go back to reference Dodds JA, Arnoczky SP: Anatomy of the anterior cruciate ligament: A blueprint for repair and reconstruction. Arthroscopy. 1994, 10: 132-139. 10.1016/S0749-8063(05)80080-5.CrossRefPubMed Dodds JA, Arnoczky SP: Anatomy of the anterior cruciate ligament: A blueprint for repair and reconstruction. Arthroscopy. 1994, 10: 132-139. 10.1016/S0749-8063(05)80080-5.CrossRefPubMed
10.
go back to reference Mikawa Y, Hamagami H, Shikata J, Yamamuro T: Elastin in the human intervertebral disk. Arch Orthop Trauma Surg. 1986, 105: 343-349. 10.1007/BF00449940.CrossRefPubMed Mikawa Y, Hamagami H, Shikata J, Yamamuro T: Elastin in the human intervertebral disk. Arch Orthop Trauma Surg. 1986, 105: 343-349. 10.1007/BF00449940.CrossRefPubMed
11.
go back to reference McNeilly CM, Banes AJ, Benjamin M, Ralphs JR: Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat. 1996, 189: 593-600.PubMedPubMedCentral McNeilly CM, Banes AJ, Benjamin M, Ralphs JR: Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat. 1996, 189: 593-600.PubMedPubMedCentral
12.
go back to reference Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF: Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine. 2007, 13: 1219-1227. 10.1038/nm1630.CrossRefPubMed Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF: Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine. 2007, 13: 1219-1227. 10.1038/nm1630.CrossRefPubMed
14.
go back to reference Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ: Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Dev. 2001, 128: 3855-3866. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ: Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Dev. 2001, 128: 3855-3866.
15.
go back to reference Shukunami C, Takimoto A, Oro M, Hiraki Y: Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol. 2006, 298: 234-247. 10.1016/j.ydbio.2006.06.036.CrossRefPubMed Shukunami C, Takimoto A, Oro M, Hiraki Y: Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol. 2006, 298: 234-247. 10.1016/j.ydbio.2006.06.036.CrossRefPubMed
16.
go back to reference Chiquet-Ehrismann R, Tucker RP: Connective tissues: signalling by tenascins. Int J Biochem Cell Biol. 2004, 36: 1085-1089. 10.1016/j.biocel.2004.01.007.CrossRefPubMed Chiquet-Ehrismann R, Tucker RP: Connective tissues: signalling by tenascins. Int J Biochem Cell Biol. 2004, 36: 1085-1089. 10.1016/j.biocel.2004.01.007.CrossRefPubMed
17.
go back to reference Woo SLY, Abramowitch SD, Kilger R, Liang R: Biomechanics of knee ligaments: injury, healing, and repair. J Biomech. 2006, 39: 1-20. 10.1016/j.jbiomech.2004.10.025.CrossRefPubMed Woo SLY, Abramowitch SD, Kilger R, Liang R: Biomechanics of knee ligaments: injury, healing, and repair. J Biomech. 2006, 39: 1-20. 10.1016/j.jbiomech.2004.10.025.CrossRefPubMed
18.
go back to reference Kwan MK, Lin THC, Woo SLY: On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech. 1993, 26: 447-452. 10.1016/0021-9290(93)90008-3.CrossRefPubMed Kwan MK, Lin THC, Woo SLY: On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech. 1993, 26: 447-452. 10.1016/0021-9290(93)90008-3.CrossRefPubMed
19.
go back to reference Bennett MB, Ker RF, Dimery NJ, Alexander RMN: Mechanical properties of various mammalian tendons. J Zoology A. 1986, 209: 537-548.CrossRef Bennett MB, Ker RF, Dimery NJ, Alexander RMN: Mechanical properties of various mammalian tendons. J Zoology A. 1986, 209: 537-548.CrossRef
20.
go back to reference Lichtwark GA, Wilson AM: In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol. 2005, 208: 4715-4725. 10.1242/jeb.01950.CrossRefPubMed Lichtwark GA, Wilson AM: In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol. 2005, 208: 4715-4725. 10.1242/jeb.01950.CrossRefPubMed
21.
go back to reference Maganaris CN, Paul JP: Tensile properties of the in vivo human gastrocnemius tendon. J Biomech. 2002, 35: 1639-1646. 10.1016/S0021-9290(02)00240-3.CrossRefPubMed Maganaris CN, Paul JP: Tensile properties of the in vivo human gastrocnemius tendon. J Biomech. 2002, 35: 1639-1646. 10.1016/S0021-9290(02)00240-3.CrossRefPubMed
22.
go back to reference Penn D, Willet TL, Glazebrook M, Snow M, Stanish WD: Is there a significant variation in the material properties of four different allografts implanted for ACL reconstruction. Knee Surg Sports Taumatol Arthrosc. 2009, 17: 260-265. 10.1007/s00167-008-0678-8.CrossRef Penn D, Willet TL, Glazebrook M, Snow M, Stanish WD: Is there a significant variation in the material properties of four different allografts implanted for ACL reconstruction. Knee Surg Sports Taumatol Arthrosc. 2009, 17: 260-265. 10.1007/s00167-008-0678-8.CrossRef
23.
go back to reference Lin VS, Lee MC, O'Neal S, McKean J, Sung KP: Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng. 1999, 5: 443-452. 10.1089/ten.1999.5.443.CrossRefPubMed Lin VS, Lee MC, O'Neal S, McKean J, Sung KP: Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng. 1999, 5: 443-452. 10.1089/ten.1999.5.443.CrossRefPubMed
24.
go back to reference Ouyang HW, Goh JCH, Mo XM, Teoh SH, Lee EH: Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Mat Sci Eng C. 2002, 20: 63-69. 10.1016/S0928-4931(02)00014-0.CrossRef Ouyang HW, Goh JCH, Mo XM, Teoh SH, Lee EH: Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Mat Sci Eng C. 2002, 20: 63-69. 10.1016/S0928-4931(02)00014-0.CrossRef
25.
go back to reference van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG: Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985, 6: 403-408. 10.1016/0142-9612(85)90101-2.CrossRefPubMed van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG: Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985, 6: 403-408. 10.1016/0142-9612(85)90101-2.CrossRefPubMed
26.
go back to reference Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT: Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005, 26: 4805-4816. 10.1016/j.biomaterials.2004.11.050.CrossRefPubMed Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT: Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005, 26: 4805-4816. 10.1016/j.biomaterials.2004.11.050.CrossRefPubMed
27.
go back to reference Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT: Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005, 26: 1523-1532. 10.1016/j.biomaterials.2004.05.014.CrossRefPubMed Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT: Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005, 26: 1523-1532. 10.1016/j.biomaterials.2004.05.014.CrossRefPubMed
28.
go back to reference Cooper JW, Woods MD, Laurencin CT: Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech. 2007, 40: 2029-2036. 10.1016/j.jbiomech.2006.09.025.CrossRef Cooper JW, Woods MD, Laurencin CT: Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech. 2007, 40: 2029-2036. 10.1016/j.jbiomech.2006.09.025.CrossRef
29.
go back to reference Chen G, Sato T, Sakane M, Ohgushi H, Ushida T, Tanaka J, Tateishi T: Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Mat Sci Eng C. 2004, 24: 861-866. 10.1016/j.msec.2004.08.041.CrossRef Chen G, Sato T, Sakane M, Ohgushi H, Ushida T, Tanaka J, Tateishi T: Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Mat Sci Eng C. 2004, 24: 861-866. 10.1016/j.msec.2004.08.041.CrossRef
30.
go back to reference Pham QP, Sharma U, Mikos AG: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 2006, 12: 1197-1211. 10.1089/ten.2006.12.1197.CrossRefPubMed Pham QP, Sharma U, Mikos AG: Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 2006, 12: 1197-1211. 10.1089/ten.2006.12.1197.CrossRefPubMed
31.
go back to reference Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW: Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomat. 2005, 26: 1261-1270. 10.1016/j.biomaterials.2004.04.037.CrossRef Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW: Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomat. 2005, 26: 1261-1270. 10.1016/j.biomaterials.2004.04.037.CrossRef
32.
go back to reference Sahoo S, Ouyang H, Goh JCH, Tay TE, Toh SL: Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006, 12: 91-99. 10.1089/ten.2006.12.91.CrossRefPubMed Sahoo S, Ouyang H, Goh JCH, Tay TE, Toh SL: Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006, 12: 91-99. 10.1089/ten.2006.12.91.CrossRefPubMed
33.
go back to reference Sahoo S, Cho-Hong JG, Siew-Lok T: Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed Mat. 2007, 2: 169-173. 10.1088/1748-6041/2/3/001.CrossRef Sahoo S, Cho-Hong JG, Siew-Lok T: Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed Mat. 2007, 2: 169-173. 10.1088/1748-6041/2/3/001.CrossRef
34.
go back to reference Spalazzi JP, Vyner MC, Jacobs MT, Moffat KL, Lu HH: Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin Orthop Relat Res. 2008, 466: 1938-1948. 10.1007/s11999-008-0310-8.CrossRefPubMedPubMedCentral Spalazzi JP, Vyner MC, Jacobs MT, Moffat KL, Lu HH: Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin Orthop Relat Res. 2008, 466: 1938-1948. 10.1007/s11999-008-0310-8.CrossRefPubMedPubMedCentral
35.
go back to reference Moffat KL, Kwei ASP, Spalazzi JP, Doty SB, Levine WN, Lu HH: Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009, 15: 115-126. 10.1089/ten.tea.2008.0014.CrossRefPubMed Moffat KL, Kwei ASP, Spalazzi JP, Doty SB, Levine WN, Lu HH: Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009, 15: 115-126. 10.1089/ten.tea.2008.0014.CrossRefPubMed
36.
go back to reference Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM: Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009, 37: 1554-1563. 10.1177/0363546509332257.CrossRefPubMedPubMedCentral Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM: Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med. 2009, 37: 1554-1563. 10.1177/0363546509332257.CrossRefPubMedPubMedCentral
37.
go back to reference Kinneberg KRC, Nirmalanandhan VS, Juncosa-Melvin N, Powell HM, Boyce ST, Shearn JT, Butler DL: Chondroitin-6-sulfate incorporation and mechanical stimulation increase MSC-collagen sponge construct stiffness. J Orthop Res. 2010, 28: 1092-1099.PubMedPubMedCentral Kinneberg KRC, Nirmalanandhan VS, Juncosa-Melvin N, Powell HM, Boyce ST, Shearn JT, Butler DL: Chondroitin-6-sulfate incorporation and mechanical stimulation increase MSC-collagen sponge construct stiffness. J Orthop Res. 2010, 28: 1092-1099.PubMedPubMedCentral
38.
go back to reference Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF: Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am. 2007, 89: 621-630. 10.2106/JBJS.E.00742.CrossRefPubMed Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF: Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am. 2007, 89: 621-630. 10.2106/JBJS.E.00742.CrossRefPubMed
39.
go back to reference Derwin K, Androjna C, Spencer E, Safran O, Bauer TW, Hunt T, Caplan A, Iannotti J: Porcine small intestine submucosa as a flexor tendon graft. Clin Orthop Relat Res. 2004, 423: 245-252. 10.1097/01.blo.0000131235.91264.d7.CrossRefPubMed Derwin K, Androjna C, Spencer E, Safran O, Bauer TW, Hunt T, Caplan A, Iannotti J: Porcine small intestine submucosa as a flexor tendon graft. Clin Orthop Relat Res. 2004, 423: 245-252. 10.1097/01.blo.0000131235.91264.d7.CrossRefPubMed
40.
go back to reference Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP: Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006, 88: 2665-2672. 10.2106/JBJS.E.01307.CrossRefPubMed Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP: Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006, 88: 2665-2672. 10.2106/JBJS.E.01307.CrossRefPubMed
41.
go back to reference Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL: Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002, 124: 214-222. 10.1115/1.1449904.CrossRefPubMed Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL: Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002, 124: 214-222. 10.1115/1.1449904.CrossRefPubMed
42.
go back to reference Kuo CK, Tuan RS: Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng A. 2008, 14: 1615-1627. 10.1089/ten.tea.2006.0415.CrossRef Kuo CK, Tuan RS: Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng A. 2008, 14: 1615-1627. 10.1089/ten.tea.2006.0415.CrossRef
43.
go back to reference Nirmalanandhan VS, Dressler MR, Shearn JT, Juncosa-Melvin N, Rao M, Gooch C, Bradica G, Butler DL: Mechanical stimulation of tissue engineered constructs: Effect of scaffold materials. J Biomech Eng. 2007, 129: 919-923. 10.1115/1.2800828.CrossRefPubMed Nirmalanandhan VS, Dressler MR, Shearn JT, Juncosa-Melvin N, Rao M, Gooch C, Bradica G, Butler DL: Mechanical stimulation of tissue engineered constructs: Effect of scaffold materials. J Biomech Eng. 2007, 129: 919-923. 10.1115/1.2800828.CrossRefPubMed
44.
go back to reference Nirmalanandhan VS, Rao M, Shearn JT, Juncosa-Melvin N, Gooch C, Butler DL: Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech. 2008, 41: 822-828. 10.1016/j.jbiomech.2007.11.009.CrossRefPubMed Nirmalanandhan VS, Rao M, Shearn JT, Juncosa-Melvin N, Gooch C, Butler DL: Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech. 2008, 41: 822-828. 10.1016/j.jbiomech.2007.11.009.CrossRefPubMed
45.
go back to reference Yamada H, Nakao H, Takasu Y, Tsubouchi K: Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mat Sci Eng C. 2001, 14: 41-46. 10.1016/S0928-4931(01)00207-7.CrossRef Yamada H, Nakao H, Takasu Y, Tsubouchi K: Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mat Sci Eng C. 2001, 14: 41-46. 10.1016/S0928-4931(01)00207-7.CrossRef
46.
go back to reference Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M: Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem. 1998, 62: 145-147. 10.1271/bbb.62.145.CrossRefPubMed Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M: Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem. 1998, 62: 145-147. 10.1271/bbb.62.145.CrossRefPubMed
47.
go back to reference Jiang P, Liu H, Wang C, Wu L, Huang J, Guo C: Tensile behavior and morphology of differently degummed silkworm (Bombyx mori) cocoon silk fibres. Mat Lett. 2006, 60: 919-925. 10.1016/j.matlet.2005.10.056.CrossRef Jiang P, Liu H, Wang C, Wu L, Huang J, Guo C: Tensile behavior and morphology of differently degummed silkworm (Bombyx mori) cocoon silk fibres. Mat Lett. 2006, 60: 919-925. 10.1016/j.matlet.2005.10.056.CrossRef
48.
go back to reference Greenwald D, Shumway S, Albear P, Gottlieb L: Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res. 1994, 56: 372-377. 10.1006/jsre.1994.1058.CrossRefPubMed Greenwald D, Shumway S, Albear P, Gottlieb L: Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res. 1994, 56: 372-377. 10.1006/jsre.1994.1058.CrossRefPubMed
49.
go back to reference Minoura N, Tsukada M, Nagura M: Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomat. 1990, 11: 430-434. 10.1016/0142-9612(90)90100-5.CrossRef Minoura N, Tsukada M, Nagura M: Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomat. 1990, 11: 430-434. 10.1016/0142-9612(90)90100-5.CrossRef
50.
go back to reference Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL: Silk matrix for tissue engineered anterior cruciate ligaments. Biomat. 2002, 23: 4131-4141. 10.1016/S0142-9612(02)00156-4.CrossRef Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL: Silk matrix for tissue engineered anterior cruciate ligaments. Biomat. 2002, 23: 4131-4141. 10.1016/S0142-9612(02)00156-4.CrossRef
51.
go back to reference Liu H, Fan H, Wang Y, Toh SL, Goh JCH: The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomat. 2008, 29: 662-674. 10.1016/j.biomaterials.2007.10.035.CrossRef Liu H, Fan H, Wang Y, Toh SL, Goh JCH: The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomat. 2008, 29: 662-674. 10.1016/j.biomaterials.2007.10.035.CrossRef
52.
go back to reference Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S: Tensile properties of human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991, 19: 217-225. 10.1177/036354659101900303.CrossRefPubMed Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S: Tensile properties of human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med. 1991, 19: 217-225. 10.1177/036354659101900303.CrossRefPubMed
53.
go back to reference Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, Ouyang HW: Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomat. 2008, 29: 3683-3692. 10.1016/j.biomaterials.2008.05.017.CrossRef Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, Ouyang HW: Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomat. 2008, 29: 3683-3692. 10.1016/j.biomaterials.2008.05.017.CrossRef
54.
go back to reference Fan H, Liu H, Wong EJW, Toh SL, Goh JCH: In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomat. 2008, 29: 3324-3337. 10.1016/j.biomaterials.2008.04.012.CrossRef Fan H, Liu H, Wong EJW, Toh SL, Goh JCH: In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomat. 2008, 29: 3324-3337. 10.1016/j.biomaterials.2008.04.012.CrossRef
55.
go back to reference Fan H, Liu H, Toh SL, Goh JCH: Anterior cruciate ligament regeneration using mesenchymal stem cells and a silk scaffold in a large animal model. Biomat. 2009, 30: 4967-4977. 10.1016/j.biomaterials.2009.05.048.CrossRef Fan H, Liu H, Toh SL, Goh JCH: Anterior cruciate ligament regeneration using mesenchymal stem cells and a silk scaffold in a large animal model. Biomat. 2009, 30: 4967-4977. 10.1016/j.biomaterials.2009.05.048.CrossRef
56.
go back to reference Orlando RA, Cheresh DA: Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin alpha v beta 3 and its ligand. J Biol Chem. 1991, 266: 19543-19550.PubMed Orlando RA, Cheresh DA: Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin alpha v beta 3 and its ligand. J Biol Chem. 1991, 266: 19543-19550.PubMed
57.
go back to reference Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomat. 2009, 30: 5068-5076. 10.1016/j.biomaterials.2009.06.008.CrossRef Garcia-Fuentes M, Meinel AJ, Hilbe M, Meinel L, Merkle HP: Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomat. 2009, 30: 5068-5076. 10.1016/j.biomaterials.2009.06.008.CrossRef
58.
go back to reference Matsumura K, Hyon SH, Nakajima N, Iwata H, Watazu A, Tsutsumi S: Surface modification of poly(ethylene-co-vinyl alcohol): hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomat. 2004, 25: 4817-4824. 10.1016/j.biomaterials.2003.11.055.CrossRef Matsumura K, Hyon SH, Nakajima N, Iwata H, Watazu A, Tsutsumi S: Surface modification of poly(ethylene-co-vinyl alcohol): hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomat. 2004, 25: 4817-4824. 10.1016/j.biomaterials.2003.11.055.CrossRef
59.
go back to reference Zhou J, Ciobanu M, Pavon-Djavid G, Gueguen V, Migonney V: Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007: 5115-5118.PubMed Zhou J, Ciobanu M, Pavon-Djavid G, Gueguen V, Migonney V: Morphology and adhesion of human fibroblast cells cultured on bioactive polymer grafted ligament prosthesis. Conf Proc IEEE Eng Med Biol Soc. 2007, 2007: 5115-5118.PubMed
60.
go back to reference Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D: Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: Possible implications in human implantation. J Biomed Mat Res B: Appl Biomat. 2005, 73B: 61-67. 10.1002/jbm.b.30170.CrossRef Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D: Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: Possible implications in human implantation. J Biomed Mat Res B: Appl Biomat. 2005, 73B: 61-67. 10.1002/jbm.b.30170.CrossRef
61.
go back to reference Malcarney HL, Bonar F, Murrell GAC: Early inflammatory reaction after rotator cuff repair with a porcine small intestine submucosal implant. Am J Sports Med. 2005, 33: 907-911. 10.1177/0363546504271500.CrossRefPubMed Malcarney HL, Bonar F, Murrell GAC: Early inflammatory reaction after rotator cuff repair with a porcine small intestine submucosal implant. Am J Sports Med. 2005, 33: 907-911. 10.1177/0363546504271500.CrossRefPubMed
62.
go back to reference Musahl V, Abramowitch SD, Gilbert TW, Tsuda E, Wang JHC, Badylak SF, Woo SLY: The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament - a functional tissue engineering study in rabbits. J Orth Res. 2004, 22: 214-220. 10.1016/S0736-0266(03)00163-3.CrossRef Musahl V, Abramowitch SD, Gilbert TW, Tsuda E, Wang JHC, Badylak SF, Woo SLY: The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament - a functional tissue engineering study in rabbits. J Orth Res. 2004, 22: 214-220. 10.1016/S0736-0266(03)00163-3.CrossRef
63.
go back to reference Whitlock PW, Smith TL, Poehling GG, Shilt JS, Van Dyke M: A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomat. 2007, 28: 4321-4329. 10.1016/j.biomaterials.2007.05.029.CrossRef Whitlock PW, Smith TL, Poehling GG, Shilt JS, Van Dyke M: A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomat. 2007, 28: 4321-4329. 10.1016/j.biomaterials.2007.05.029.CrossRef
64.
go back to reference Molloy T, Wang Y, Murrell GAC: The roles of growth factors in tendon and ligament healing. Sports Med. 2003, 33: 381-394. 10.2165/00007256-200333050-00004.CrossRefPubMed Molloy T, Wang Y, Murrell GAC: The roles of growth factors in tendon and ligament healing. Sports Med. 2003, 33: 381-394. 10.2165/00007256-200333050-00004.CrossRefPubMed
65.
go back to reference Chhabra A, Tsou D, Clark RT, Gaschen V, Hunziker EB, Mikic B: GDF-5 deficiency in mice delays Achilles tendon healing. J Orthop Res. 2003, 21: 826-835. 10.1016/S0736-0266(03)00049-4.CrossRefPubMed Chhabra A, Tsou D, Clark RT, Gaschen V, Hunziker EB, Mikic B: GDF-5 deficiency in mice delays Achilles tendon healing. J Orthop Res. 2003, 21: 826-835. 10.1016/S0736-0266(03)00049-4.CrossRefPubMed
66.
go back to reference Mikic B, Rossmeier K, Bierwert L: Sexual dimorphism in the effect of GDF-6 deficiency on murine tendon. J Orthop Res. 2009, 27: 1603-1611. 10.1002/jor.20916.CrossRefPubMedPubMedCentral Mikic B, Rossmeier K, Bierwert L: Sexual dimorphism in the effect of GDF-6 deficiency on murine tendon. J Orthop Res. 2009, 27: 1603-1611. 10.1002/jor.20916.CrossRefPubMedPubMedCentral
67.
go back to reference Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D: Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol. 2002, 247: 351-366. 10.1006/dbio.2002.0707.CrossRefPubMed Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D: Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol. 2002, 247: 351-366. 10.1006/dbio.2002.0707.CrossRefPubMed
68.
go back to reference Thomopoulos S, Das R, Sakiyama-Elbert S, Silva MJ, Charlton N, Gelberman RH: bFGF and PDGF-BB for tendon repair: controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng. 2010, 38: 225-234. 10.1007/s10439-009-9844-5.CrossRefPubMedPubMedCentral Thomopoulos S, Das R, Sakiyama-Elbert S, Silva MJ, Charlton N, Gelberman RH: bFGF and PDGF-BB for tendon repair: controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng. 2010, 38: 225-234. 10.1007/s10439-009-9844-5.CrossRefPubMedPubMedCentral
69.
go back to reference Murakami S, Takayama S, Ikezawa K, Shimabukuro Y, Kitamura M, Nozaki T, Terashima A, Asano T, Okada H: Regeneration of periodontal tissues by basic fibroblast growth factor. J Peridontal Res. 1999, 34: 425-430. 10.1111/j.1600-0765.1999.tb02277.x.CrossRef Murakami S, Takayama S, Ikezawa K, Shimabukuro Y, Kitamura M, Nozaki T, Terashima A, Asano T, Okada H: Regeneration of periodontal tissues by basic fibroblast growth factor. J Peridontal Res. 1999, 34: 425-430. 10.1111/j.1600-0765.1999.tb02277.x.CrossRef
70.
go back to reference Sahoo S, Ang LT, Goh JCH, Toh SL: Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation. 2010, 79: 102-110. 10.1016/j.diff.2009.11.001.CrossRefPubMed Sahoo S, Ang LT, Goh JCH, Toh SL: Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation. 2010, 79: 102-110. 10.1016/j.diff.2009.11.001.CrossRefPubMed
71.
go back to reference Kimura Y, Hokugo A, Takamoto T, Tabata Y, Kurosawa H: Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng C. 2008, 14: 47-57. 10.1089/tec.2007.0286.CrossRef Kimura Y, Hokugo A, Takamoto T, Tabata Y, Kurosawa H: Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng C. 2008, 14: 47-57. 10.1089/tec.2007.0286.CrossRef
72.
go back to reference Kuo CK, Petersen BC, Tuan RS: Spatiotemporal protein distribution of TGF-βs, their receptors, and extracellular matrix molecules during embryonic tendon development. Dev Dyn. 2008, 237: 1477-1489. 10.1002/dvdy.21547.CrossRefPubMedPubMedCentral Kuo CK, Petersen BC, Tuan RS: Spatiotemporal protein distribution of TGF-βs, their receptors, and extracellular matrix molecules during embryonic tendon development. Dev Dyn. 2008, 237: 1477-1489. 10.1002/dvdy.21547.CrossRefPubMedPubMedCentral
73.
go back to reference Pyrce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R: Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development. 2009, 136: 1351-1361. 10.1242/dev.027342.CrossRef Pyrce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R: Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development. 2009, 136: 1351-1361. 10.1242/dev.027342.CrossRef
74.
go back to reference Wolff J: Das gesetz der transformation der knochen. Dtsch med Wochenschr. 1893, 19: 1222-1224. 10.1055/s-0028-1144106.CrossRef Wolff J: Das gesetz der transformation der knochen. Dtsch med Wochenschr. 1893, 19: 1222-1224. 10.1055/s-0028-1144106.CrossRef
75.
go back to reference Meade JB, Cowin SC, Klawitter JJ, Van Buskirk WC, Skinner HB: Bone remodelling due to contiuously applied loads. Calcif Tissue Int. 1984, 36: S25-S30. 10.1007/BF02406130.CrossRefPubMed Meade JB, Cowin SC, Klawitter JJ, Van Buskirk WC, Skinner HB: Bone remodelling due to contiuously applied loads. Calcif Tissue Int. 1984, 36: S25-S30. 10.1007/BF02406130.CrossRefPubMed
76.
go back to reference Carter DR, Orr TE, Fyhrie DP: Relationships between loading history and femoral cancellous bone architecture. J Biomech. 1989, 22: 231-244. 10.1016/0021-9290(89)90091-2.CrossRefPubMed Carter DR, Orr TE, Fyhrie DP: Relationships between loading history and femoral cancellous bone architecture. J Biomech. 1989, 22: 231-244. 10.1016/0021-9290(89)90091-2.CrossRefPubMed
77.
go back to reference Chiquet-Ehrismann R, Tannheimer M, Koch M, Brunner A, Spring J, Martin D, Baumgartner S, Chiquet M: Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J Cell Biol. 1994, 127: 2093-2101. 10.1083/jcb.127.6.2093.CrossRefPubMed Chiquet-Ehrismann R, Tannheimer M, Koch M, Brunner A, Spring J, Martin D, Baumgartner S, Chiquet M: Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J Cell Biol. 1994, 127: 2093-2101. 10.1083/jcb.127.6.2093.CrossRefPubMed
78.
go back to reference Toyoda T, Matsumoto H, Fujikawa K, Saito S, Inoue K: Tensile load and the metabolism of anterior cruciate ligament cells. Clin Orth Related Res. 1998, 353: 247-255. 10.1097/00003086-199808000-00029.CrossRef Toyoda T, Matsumoto H, Fujikawa K, Saito S, Inoue K: Tensile load and the metabolism of anterior cruciate ligament cells. Clin Orth Related Res. 1998, 353: 247-255. 10.1097/00003086-199808000-00029.CrossRef
79.
go back to reference Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL: Cell differentiation by mechanical stress. FASEB J. 2002, 16: 267-269. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL: Cell differentiation by mechanical stress. FASEB J. 2002, 16: 267-269.
80.
go back to reference Garvin J, Qi J, Maloney M, Banes AJ: Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003, 9: 967-979. 10.1089/107632703322495619.CrossRefPubMed Garvin J, Qi J, Maloney M, Banes AJ: Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003, 9: 967-979. 10.1089/107632703322495619.CrossRefPubMed
81.
go back to reference Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, Thibboneir A, Capla JM, McCarthy JG, Gurtner GC: Uniaxial mechanical strain: An in vitro correlate to distraction osteogenesis. J Surg Res. 2007, 143: 329-336.CrossRefPubMed Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, Thibboneir A, Capla JM, McCarthy JG, Gurtner GC: Uniaxial mechanical strain: An in vitro correlate to distraction osteogenesis. J Surg Res. 2007, 143: 329-336.CrossRefPubMed
82.
go back to reference Riboh J, Chong AKS, Pham H, Longaker M, Jacobs C, Chang J: Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. J Biomech Eng. 2002, 124: 214-222. 10.1115/1.1449904.CrossRef Riboh J, Chong AKS, Pham H, Longaker M, Jacobs C, Chang J: Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. J Biomech Eng. 2002, 124: 214-222. 10.1115/1.1449904.CrossRef
83.
go back to reference Zhang L, Kahn CJF, Chen HQ, Tran N, Wang X: Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C. Cell Biol Int. 2008, 32: 344-352. 10.1016/j.cellbi.2007.12.018.CrossRefPubMed Zhang L, Kahn CJF, Chen HQ, Tran N, Wang X: Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C. Cell Biol Int. 2008, 32: 344-352. 10.1016/j.cellbi.2007.12.018.CrossRefPubMed
84.
go back to reference Chokalingam K, Juncosa-Melvin N, Hunter SA, Gooch C, Frede C, Florert J, Bradica G, Wenstrup R, Butler DL: Tensile stimulation of murine stem cell-collagen sponge constructs increases collagen type I gene expression and linear stiffness. Tissue Eng Part A. 2009, 15: 2561-2570. 10.1089/ten.tea.2008.0451.CrossRefPubMedPubMedCentral Chokalingam K, Juncosa-Melvin N, Hunter SA, Gooch C, Frede C, Florert J, Bradica G, Wenstrup R, Butler DL: Tensile stimulation of murine stem cell-collagen sponge constructs increases collagen type I gene expression and linear stiffness. Tissue Eng Part A. 2009, 15: 2561-2570. 10.1089/ten.tea.2008.0451.CrossRefPubMedPubMedCentral
85.
go back to reference Kuo CK, Tuan RS: Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng A. 2008, 14: 1615-1627. 10.1089/ten.tea.2006.0415.CrossRef Kuo CK, Tuan RS: Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng A. 2008, 14: 1615-1627. 10.1089/ten.tea.2006.0415.CrossRef
86.
go back to reference Moe K, Tay TE, Goh JCH, Ouyang HW, Toh SL: Cyclic uniaxial strains on fibroblasts-seeded PLGA scaffolds for tissue engineering of ligaments. Proc SPIE Int Soc Optical Eng. 2005, 5852: 665-670. Moe K, Tay TE, Goh JCH, Ouyang HW, Toh SL: Cyclic uniaxial strains on fibroblasts-seeded PLGA scaffolds for tissue engineering of ligaments. Proc SPIE Int Soc Optical Eng. 2005, 5852: 665-670.
87.
go back to reference Raif EM, Seedhom BB: Effect of cyclic tensile strain on proliferation of synovial cells seeded onto synthetic ligament scaffolds - an in vitro simulation. Bone. 2005, 36: 433-443. 10.1016/j.bone.2004.12.011.CrossRef Raif EM, Seedhom BB: Effect of cyclic tensile strain on proliferation of synovial cells seeded onto synthetic ligament scaffolds - an in vitro simulation. Bone. 2005, 36: 433-443. 10.1016/j.bone.2004.12.011.CrossRef
88.
go back to reference De Bari C, Dell' Accio F, Tylzanowski P, Luyten P: Multipotent mesenchymal stem cells from human synovial membrane. Arthritis Rheumatism. 2001, 44: 1928-1942. 10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P.CrossRefPubMed De Bari C, Dell' Accio F, Tylzanowski P, Luyten P: Multipotent mesenchymal stem cells from human synovial membrane. Arthritis Rheumatism. 2001, 44: 1928-1942. 10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P.CrossRefPubMed
89.
go back to reference Park SA, Kim IA, Lee YJ, Shin JW, Kim CR, Kim JK, Yang YI, Shin JW: Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli. J Biosci Bioeng. 2006, 102: 402-412. 10.1263/jbb.102.402.CrossRefPubMed Park SA, Kim IA, Lee YJ, Shin JW, Kim CR, Kim JK, Yang YI, Shin JW: Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli. J Biosci Bioeng. 2006, 102: 402-412. 10.1263/jbb.102.402.CrossRefPubMed
90.
go back to reference Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ: Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech. 2005, 38: 1653-1664. 10.1016/j.jbiomech.2004.07.027.CrossRefPubMed Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ: Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech. 2005, 38: 1653-1664. 10.1016/j.jbiomech.2004.07.027.CrossRefPubMed
Metadata
Title
Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs
Authors
Catherine K Kuo
Joseph E Marturano
Rocky S Tuan
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2010
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/1758-2555-2-20

Other articles of this Issue 1/2010

BMC Sports Science, Medicine and Rehabilitation 1/2010 Go to the issue