Skip to main content
Top
Published in: Anatomical Science International 1/2017

01-01-2017 | Review Article

Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus

Authors: Daisuke Koga, Tatsuo Ushiki, Tsuyoshi Watanabe

Published in: Anatomical Science International | Issue 1/2017

Login to get access

Abstract

The structure of the Golgi apparatus has been extensively examined by light and electron microscopy, but details of its three-dimensional (3D) structure have remained unclear because of the technical limitations of conventional microscopy techniques. To overcome this problem, we have developed several novel scanning electron microscopy (SEM) methods for observing the 3D structure of subcellular organelles including the Golgi apparatus: (1) an osmium maceration method that facilitates SEM observation of membranous organelles, including the Golgi apparatus, by selectively removing soluble cytoplasmic proteins, (2) an osmium impregnation/maceration method that combines an osmium impregnation method with the osmium maceration method to determine the polarity of the Golgi apparatus by SEM, (3) a correlative light and SEM method that combines a cryosectioning technique with the osmium maceration method to enable correlation of the immunocytochemical distribution of molecules with the 3D ultrastructure of the Golgi apparatus, and (4) array tomography based on the systematic collection and integration of SEM images of serial ultrathin sections on glass slides for revealing the 3D ultrastructure of the entire Golgi apparatus. Together, the novel SEM techniques listed above can reveal the complete 3D structure of the Golgi apparatus in different cell types.
Literature
go back to reference Beams HW, King RL (1933) The Golgi apparatus in the developing tooth, with special reference to polarity. Anat Rec 57:29–39CrossRef Beams HW, King RL (1933) The Golgi apparatus in the developing tooth, with special reference to polarity. Anat Rec 57:29–39CrossRef
go back to reference Beckwith MS, Beckwith KS, Sikorski P, Skogaker NT, Flo TH, Halaas Ø (2015) Seeing a mycobacterium-infected cell in nanoscale 3D: correlative imaging by light microscopy and FIB/SEM tomography. PLoS One 10:e0134644CrossRefPubMedPubMedCentral Beckwith MS, Beckwith KS, Sikorski P, Skogaker NT, Flo TH, Halaas Ø (2015) Seeing a mycobacterium-infected cell in nanoscale 3D: correlative imaging by light microscopy and FIB/SEM tomography. PLoS One 10:e0134644CrossRefPubMedPubMedCentral
go back to reference Begemann I, Viplav A, Rasch C, Galic M (2015) Stochastic micro-pattern for automated correlative fluorescence—scanning electron microscopy. Sci Rep 5:17973CrossRefPubMedPubMedCentral Begemann I, Viplav A, Rasch C, Galic M (2015) Stochastic micro-pattern for automated correlative fluorescence—scanning electron microscopy. Sci Rep 5:17973CrossRefPubMedPubMedCentral
go back to reference Benedetti L, Sogne E, Rodighiero S, Marchesi D, Milani P, Francolini M (2014) Customized patterned substrates for highly versatile correlative light-scanning electron microscopy. Sci Rep 4:7033CrossRefPubMedPubMedCentral Benedetti L, Sogne E, Rodighiero S, Marchesi D, Milani P, Francolini M (2014) Customized patterned substrates for highly versatile correlative light-scanning electron microscopy. Sci Rep 4:7033CrossRefPubMedPubMedCentral
go back to reference Blazquez-Llorca L, Hummel E, Zimmerman H, Zou C, Burgold S, Rietdorf J, Herms J (2015) Correlation of two-photon in vivo imaging and FIB/SEM microscopy. J Microsc 259:129–136CrossRefPubMedPubMedCentral Blazquez-Llorca L, Hummel E, Zimmerman H, Zou C, Burgold S, Rietdorf J, Herms J (2015) Correlation of two-photon in vivo imaging and FIB/SEM microscopy. J Microsc 259:129–136CrossRefPubMedPubMedCentral
go back to reference Bochimoto H, Koga D, Sakai Y, Hira Y, Hosaka M, Ushiki T, Watanabe T (2013) Sustained treatment with a GnRH agonist (leuprorelin) affects the ultrastructure characteristics of membranous organelles in male rat pituitary gonadotropes. Arch Histol Cytol 74:41–57CrossRef Bochimoto H, Koga D, Sakai Y, Hira Y, Hosaka M, Ushiki T, Watanabe T (2013) Sustained treatment with a GnRH agonist (leuprorelin) affects the ultrastructure characteristics of membranous organelles in male rat pituitary gonadotropes. Arch Histol Cytol 74:41–57CrossRef
go back to reference Bos E, Hussaarts L, van Weering JR, Ellisman MH, de Wit H, Koster AJ (2014) Vitrification of Tokuyasu-style immuno-labelled sections for correlative cryo light microscopy and cryo electron tomography. J Struct Biol 186:273–282CrossRefPubMed Bos E, Hussaarts L, van Weering JR, Ellisman MH, de Wit H, Koster AJ (2014) Vitrification of Tokuyasu-style immuno-labelled sections for correlative cryo light microscopy and cryo electron tomography. J Struct Biol 186:273–282CrossRefPubMed
go back to reference Bosch C, Martínez A, Masachs N, Teixeira CM, Fernaud I, Ulloa F, Pérez-Martínez E, Lois C, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9:60CrossRefPubMedPubMedCentral Bosch C, Martínez A, Masachs N, Teixeira CM, Fernaud I, Ulloa F, Pérez-Martínez E, Lois C, Comella JX, DeFelipe J, Merchán-Pérez A, Soriano E (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9:60CrossRefPubMedPubMedCentral
go back to reference Dalton AJ, Flex MD (1953) Studies on the Golgi substance of the epithelial cells of the epididymis and duodenum of the mouse. Am J Anat 92:277–305CrossRefPubMed Dalton AJ, Flex MD (1953) Studies on the Golgi substance of the epithelial cells of the epididymis and duodenum of the mouse. Am J Anat 92:277–305CrossRefPubMed
go back to reference Dalton AJ, Flex MD (1954) Cytologic and cytochemical characteristics of the Golgi substance of the epithelial cells of the epididymis-in situ, in homogenates and after isolation. Am J Anat 94:171–207CrossRefPubMed Dalton AJ, Flex MD (1954) Cytologic and cytochemical characteristics of the Golgi substance of the epithelial cells of the epididymis-in situ, in homogenates and after isolation. Am J Anat 94:171–207CrossRefPubMed
go back to reference Darcy KJ, Staras K, Collinson LM, Goda Y (2006) An ultrastructural readout of fluorescence recovery after photobleaching using correlative light and electron microscopy. Nat Protoc 1:988–994CrossRefPubMed Darcy KJ, Staras K, Collinson LM, Goda Y (2006) An ultrastructural readout of fluorescence recovery after photobleaching using correlative light and electron microscopy. Nat Protoc 1:988–994CrossRefPubMed
go back to reference Dylewski DP, Haralick RM, Keenan TW (1984) Three-dimensional ultrastructure of the Golgi apparatus in bovine mammary epithelial cells during lactation. J Ultrastruct Res 87:75–85CrossRefPubMed Dylewski DP, Haralick RM, Keenan TW (1984) Three-dimensional ultrastructure of the Golgi apparatus in bovine mammary epithelial cells during lactation. J Ultrastruct Res 87:75–85CrossRefPubMed
go back to reference Ellisman MH, Ghosh A (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J Neurosci 33:507–522CrossRefPubMedPubMedCentral Ellisman MH, Ghosh A (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J Neurosci 33:507–522CrossRefPubMedPubMedCentral
go back to reference Friend DS (1969) Cytochemical staining of multivesicular body and Golgi vesicles. J Cell Biol 41:263–279CrossRef Friend DS (1969) Cytochemical staining of multivesicular body and Golgi vesicles. J Cell Biol 41:263–279CrossRef
go back to reference Frisch B, Lewis SM, Sherman D, Stuart PR, Osborn JS (1974) Utilization of ion-etching in studying blood cell ultrastructure. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 655–664 Frisch B, Lewis SM, Sherman D, Stuart PR, Osborn JS (1974) Utilization of ion-etching in studying blood cell ultrastructure. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 655–664
go back to reference Fujita T, Nagatani T, Hattori A (1974) A simple method of ion-etching for biological materials. An application to blood cells and spermatozoa. Arch Histol Jpn 36:195–204CrossRefPubMed Fujita T, Nagatani T, Hattori A (1974) A simple method of ion-etching for biological materials. An application to blood cells and spermatozoa. Arch Histol Jpn 36:195–204CrossRefPubMed
go back to reference Fulker MJ, Holland L, Hurely RE (1973) Ion etching for organic materials. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 379–386 Fulker MJ, Holland L, Hurely RE (1973) Ion etching for organic materials. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 379–386
go back to reference Golgi C (1898a) Sur la structure des cellules nerveuses. Arch Ital Biol 30:60–71 Golgi C (1898a) Sur la structure des cellules nerveuses. Arch Ital Biol 30:60–71
go back to reference Golgi C (1898b) Sur la structure des cellules nerveuses des ganglions spinaux. Arch Ital Biol 30:278–286 Golgi C (1898b) Sur la structure des cellules nerveuses des ganglions spinaux. Arch Ital Biol 30:278–286
go back to reference Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862CrossRefPubMed Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862CrossRefPubMed
go back to reference Haggis GH (1970) Cryofracture of biological material. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 99–104 Haggis GH (1970) Cryofracture of biological material. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 99–104
go back to reference Hand A, Oliver C (1984) Effects of secretory stimulation of the Golgi apparatus and GERL of rat parotid acinar cells. J Histochem Cytochem 32:403–412CrossRefPubMed Hand A, Oliver C (1984) Effects of secretory stimulation of the Golgi apparatus and GERL of rat parotid acinar cells. J Histochem Cytochem 32:403–412CrossRefPubMed
go back to reference Hermo L, Rmbourg A, Clermont Y (1991) Golgi apparatus of epithelial principal cells of the epididymal initial segment of the rat: structure, relationship with endoplasmic reticulum, and role in the formation of secretory vesicles. Anat Rec 229:159–176CrossRefPubMed Hermo L, Rmbourg A, Clermont Y (1991) Golgi apparatus of epithelial principal cells of the epididymal initial segment of the rat: structure, relationship with endoplasmic reticulum, and role in the formation of secretory vesicles. Anat Rec 229:159–176CrossRefPubMed
go back to reference Ho HC, Tang CY, Suarez SS (1999) Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat Rec 256:189–194CrossRefPubMed Ho HC, Tang CY, Suarez SS (1999) Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat Rec 256:189–194CrossRefPubMed
go back to reference Hodges GM, Muir MD, Sella C, Carteaud AJ (1972) The effect of radio-frequency sputter ion etching and ion-beam etching on biological material: a scanning electron microscope study. J Microsc 95:445–451CrossRefPubMed Hodges GM, Muir MD, Sella C, Carteaud AJ (1972) The effect of radio-frequency sputter ion etching and ion-beam etching on biological material: a scanning electron microscope study. J Microsc 95:445–451CrossRefPubMed
go back to reference Holcomb PS, Hoffpauir BK, Hoyson MC, Jackson DR, Deerinck TJ, Marrs GS, Dehoff M, Wu J, Ellisman MH, Spirou GA (2013) Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development. J Neurosci 33:12954–12969CrossRefPubMedPubMedCentral Holcomb PS, Hoffpauir BK, Hoyson MC, Jackson DR, Deerinck TJ, Marrs GS, Dehoff M, Wu J, Ellisman MH, Spirou GA (2013) Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development. J Neurosci 33:12954–12969CrossRefPubMedPubMedCentral
go back to reference Horstmann H, Körber C, Sätzler K, Aydin D, Kuner T (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7:e35172CrossRefPubMedPubMedCentral Horstmann H, Körber C, Sätzler K, Aydin D, Kuner T (2012) Serial section scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging of cells and tissues. PLoS One 7:e35172CrossRefPubMedPubMedCentral
go back to reference Humphreys WJ, Spurlock BO, Johnson JS (1974) Critical point drying of ethanol-infiltrated, cryofractured biological specimens for scanning electron microscopy. In: Johari O, Corvin I (eds) scanning electron microscopy. IIT Research Institute, Chicago, pp 275–282 Humphreys WJ, Spurlock BO, Johnson JS (1974) Critical point drying of ethanol-infiltrated, cryofractured biological specimens for scanning electron microscopy. In: Johari O, Corvin I (eds) scanning electron microscopy. IIT Research Institute, Chicago, pp 275–282
go back to reference Ichikawa A, Ichikawa I (1987) The fine structure of sublingual gland acinar cells of the Mongolian gerbil, Meriones unguiculatus, processed by rapid freezing followed by freeze-substitution fixation. Cell Tissue Res 250:305–314CrossRefPubMed Ichikawa A, Ichikawa I (1987) The fine structure of sublingual gland acinar cells of the Mongolian gerbil, Meriones unguiculatus, processed by rapid freezing followed by freeze-substitution fixation. Cell Tissue Res 250:305–314CrossRefPubMed
go back to reference Inoue K, Kurosumi K (1977) Cytochemical and three-dimensional studies on Golgi apparatus and GERL of rat anterior pituitary cells by transmission electron microscopy. Cell Struct Funct 2:171–186CrossRef Inoue K, Kurosumi K (1977) Cytochemical and three-dimensional studies on Golgi apparatus and GERL of rat anterior pituitary cells by transmission electron microscopy. Cell Struct Funct 2:171–186CrossRef
go back to reference Kanazawa T, Gotoh M, Ohta K, Shiba N, Nakamura K (2015) Three-dimensional ultrastructural analysis of development at the supraspinatus insertion by using focused ion beam/scanning electron microscope tomography in rats. J Orthop Res 34:969–976CrossRefPubMed Kanazawa T, Gotoh M, Ohta K, Shiba N, Nakamura K (2015) Three-dimensional ultrastructural analysis of development at the supraspinatus insertion by using focused ion beam/scanning electron microscope tomography in rats. J Orthop Res 34:969–976CrossRefPubMed
go back to reference Katsumoto T, Inoue M, Naguro T, Kurimura T (1991) Association of cytoskeletons with the Golgi apparatus: three-dimensional observation and computer-graphic reconstruction. J Electron Microsc 40:24–28 Katsumoto T, Inoue M, Naguro T, Kurimura T (1991) Association of cytoskeletons with the Golgi apparatus: three-dimensional observation and computer-graphic reconstruction. J Electron Microsc 40:24–28
go back to reference Koga D, Ushiki T (2006) Three-dimensional ultrastructure of the Golgi apparatus in different cells: high-resolution scanning electron microscopy of osmium-macerated tissues. Arch Histol Cytol 69:357–374CrossRefPubMed Koga D, Ushiki T (2006) Three-dimensional ultrastructure of the Golgi apparatus in different cells: high-resolution scanning electron microscopy of osmium-macerated tissues. Arch Histol Cytol 69:357–374CrossRefPubMed
go back to reference Koga D, Ushiki T (2008) The morphological analysis of the Golgi apparatus by scanning electron microscopy. Kenbikyo 43:283–286 (in Japanese with English abstract) Koga D, Ushiki T (2008) The morphological analysis of the Golgi apparatus by scanning electron microscopy. Kenbikyo 43:283–286 (in Japanese with English abstract)
go back to reference Koga D, Kusumi S, Bochimoto H, Watanabe T, Ushiki T (2015a) Correlative light and scanning electron microscopy for observing the three-dimensional ultrastructure of membranous cell organelles in relation to their molecular components. J Histochem Cytochem 63:968–979CrossRefPubMedPubMedCentral Koga D, Kusumi S, Bochimoto H, Watanabe T, Ushiki T (2015a) Correlative light and scanning electron microscopy for observing the three-dimensional ultrastructure of membranous cell organelles in relation to their molecular components. J Histochem Cytochem 63:968–979CrossRefPubMedPubMedCentral
go back to reference Koga D, Kusumi S, Shodo R, Dan Y, Ushiki T (2015b) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy 64:387–394CrossRefPubMed Koga D, Kusumi S, Shodo R, Dan Y, Ushiki T (2015b) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy 64:387–394CrossRefPubMed
go back to reference Koga D, Kusumi S, Ushiki T (2016a) Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Microscopy 65:145–157CrossRefPubMed Koga D, Kusumi S, Ushiki T (2016a) Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Microscopy 65:145–157CrossRefPubMed
go back to reference Koga D, Bochimoto H, Watanabe T, Ushiki T (2016b) Backscattered electron image of osmium-impregnated/macerated tissues as a novel technique for identifying the cis-face of the Golgi apparatus by high-resolution scanning electron microscopy. J Microsc 263:87–96CrossRefPubMed Koga D, Bochimoto H, Watanabe T, Ushiki T (2016b) Backscattered electron image of osmium-impregnated/macerated tissues as a novel technique for identifying the cis-face of the Golgi apparatus by high-resolution scanning electron microscopy. J Microsc 263:87–96CrossRefPubMed
go back to reference Koike M, Shibata M, Ezaki J, Peters C, Saftig P, Kominami E, Uchiyama Y (2013) Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system. Eur J Neurosci 37:816–830CrossRefPubMed Koike M, Shibata M, Ezaki J, Peters C, Saftig P, Kominami E, Uchiyama Y (2013) Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system. Eur J Neurosci 37:816–830CrossRefPubMed
go back to reference Kopsch FR (1925) Das Binnengerüst in den Zellen einiger Organe des Menschen. Z Mikrosk Anat Forsch 5:221–284 Kopsch FR (1925) Das Binnengerüst in den Zellen einiger Organe des Menschen. Z Mikrosk Anat Forsch 5:221–284
go back to reference Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149CrossRefPubMedPubMedCentral Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149CrossRefPubMedPubMedCentral
go back to reference Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 13:2810–2825CrossRefPubMedPubMedCentral Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 13:2810–2825CrossRefPubMedPubMedCentral
go back to reference Lewis SM, Osborn JS, Stuart PR (1968) Demonstration of an internal structure within the red blood cell by ion etching and scanning electron microscopy. Nature 220:614–616CrossRefPubMed Lewis SM, Osborn JS, Stuart PR (1968) Demonstration of an internal structure within the red blood cell by ion etching and scanning electron microscopy. Nature 220:614–616CrossRefPubMed
go back to reference Lieberman AR (1969) Light- and electron microscope observations on the Golgi apparatus of normal and axotomized primary sensory neurons. J Anat 104:309–332PubMedPubMedCentral Lieberman AR (1969) Light- and electron microscope observations on the Golgi apparatus of normal and axotomized primary sensory neurons. J Anat 104:309–332PubMedPubMedCentral
go back to reference Lim DJ (1971) Scanning electron microscopic observation on non-mechanically cryofractured biological tissue. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 257–264 Lim DJ (1971) Scanning electron microscopic observation on non-mechanically cryofractured biological tissue. In: Johari O, Corvin I (eds) Scanning electron microscopy. IIT Research Institute, Chicago, pp 257–264
go back to reference Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98:2399–2406CrossRefPubMedPubMedCentral Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98:2399–2406CrossRefPubMedPubMedCentral
go back to reference Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101:5565–5570CrossRefPubMedPubMedCentral Marsh BJ, Volkmann N, McIntosh JR, Howell KE (2004) Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101:5565–5570CrossRefPubMedPubMedCentral
go back to reference Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36CrossRefPubMedPubMedCentral Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36CrossRefPubMedPubMedCentral
go back to reference Murakami T (1971) Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch Histol Jpn 32:445–454CrossRefPubMed Murakami T (1971) Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch Histol Jpn 32:445–454CrossRefPubMed
go back to reference Murakami T (1973) A metal impregnation method of biological specimens for scanning electron microscopy. Arch Histol Jpn 35:323–326CrossRefPubMed Murakami T (1973) A metal impregnation method of biological specimens for scanning electron microscopy. Arch Histol Jpn 35:323–326CrossRefPubMed
go back to reference Novikoff PM, Novikoff AB, Quintana N, Hauw JJ (1971) Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol 50:859–886CrossRefPubMedPubMedCentral Novikoff PM, Novikoff AB, Quintana N, Hauw JJ (1971) Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol 50:859–886CrossRefPubMedPubMedCentral
go back to reference Ohta K, Sadayama S, Togo A, Higashi R, Tanoue R, Nakamura K (2012) Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron 43:612–620CrossRefPubMed Ohta K, Sadayama S, Togo A, Higashi R, Tanoue R, Nakamura K (2012) Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron 43:612–620CrossRefPubMed
go back to reference Ohtani O (1987) Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch Histol Jpn 50:557–566CrossRefPubMed Ohtani O (1987) Three-dimensional organization of the connective tissue fibers of the human pancreas: a scanning electron microscopic study of NaOH treated-tissues. Arch Histol Jpn 50:557–566CrossRefPubMed
go back to reference Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA (2000) Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 148:45–58CrossRefPubMedPubMedCentral Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA (2000) Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 148:45–58CrossRefPubMedPubMedCentral
go back to reference Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains. Mol Biol Cell 14:4470–4485CrossRefPubMedPubMedCentral Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-golgi network tubular domains. Mol Biol Cell 14:4470–4485CrossRefPubMedPubMedCentral
go back to reference Polishchuk RS, San Pietro E, Di Pentima A, Teté S, Bonifacino JS (2006) Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes. Traffic 7:1092–1103CrossRefPubMed Polishchuk RS, San Pietro E, Di Pentima A, Teté S, Bonifacino JS (2006) Ultrastructure of long-range transport carriers moving from the trans Golgi network to peripheral endosomes. Traffic 7:1092–1103CrossRefPubMed
go back to reference Rambourg A, Clermont Y (1986) Tridimensional structure of the Golgi apparatus in type A ganglion cells of the rat. Am J Anat 176:393–409CrossRefPubMed Rambourg A, Clermont Y (1986) Tridimensional structure of the Golgi apparatus in type A ganglion cells of the rat. Am J Anat 176:393–409CrossRefPubMed
go back to reference Rambourg A, Clermont Y, Marraud A (1974) Three-dimensional structure of the osmium-impregnated Golgi apparatus as seen in the high voltage electron microscope. Am J Anat 140:27–46CrossRefPubMed Rambourg A, Clermont Y, Marraud A (1974) Three-dimensional structure of the osmium-impregnated Golgi apparatus as seen in the high voltage electron microscope. Am J Anat 140:27–46CrossRefPubMed
go back to reference Rambourg A, Clermont Y, Hermo L (1979) three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat. Am J Anat 154:455–476CrossRefPubMed Rambourg A, Clermont Y, Hermo L (1979) three-dimensional architecture of the Golgi apparatus in Sertoli cells of the rat. Am J Anat 154:455–476CrossRefPubMed
go back to reference Rambourg A, Segretain D, Clermont Y (1984) Tridimensional architecture of the Golgi apparatus in the atrial muscle of the rat. Am J Anat 170:163–179CrossRefPubMed Rambourg A, Segretain D, Clermont Y (1984) Tridimensional architecture of the Golgi apparatus in the atrial muscle of the rat. Am J Anat 170:163–179CrossRefPubMed
go back to reference Rambourg A, Clermont Y, Hermo L, Segretain D (1987) Tridimensional architecture of the Golgi apparatus and its components in mouse cells of Brunner’s glands of the mouse. Am J Anat 179:95–107CrossRefPubMed Rambourg A, Clermont Y, Hermo L, Segretain D (1987) Tridimensional architecture of the Golgi apparatus and its components in mouse cells of Brunner’s glands of the mouse. Am J Anat 179:95–107CrossRefPubMed
go back to reference Rambourg A, Clermont Y, Hermo L (1988) Formation of secretion granules in the Golgi apparatus of pancreatic acinar cells of the rat. Am J Anat 183:187–199CrossRefPubMed Rambourg A, Clermont Y, Hermo L (1988) Formation of secretion granules in the Golgi apparatus of pancreatic acinar cells of the rat. Am J Anat 183:187–199CrossRefPubMed
go back to reference Rambourg A, Clermont Y, Chrétien M, Oliver L (1992) Formation of secretory granules in the Golgi apparatus of prolactin cells in the rat pituitary gland: a stereoscopic study. Am J Anat 232:169–179 Rambourg A, Clermont Y, Chrétien M, Oliver L (1992) Formation of secretory granules in the Golgi apparatus of prolactin cells in the rat pituitary gland: a stereoscopic study. Am J Anat 232:169–179
go back to reference Reichelt M, Joubert L, Perrino J, Koh AL, Phanwar I, Arvin AM (2012) 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography. PLoS Pathog 8:e1002740CrossRefPubMedPubMedCentral Reichelt M, Joubert L, Perrino J, Koh AL, Phanwar I, Arvin AM (2012) 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography. PLoS Pathog 8:e1002740CrossRefPubMedPubMedCentral
go back to reference Robinson JM, Takizawa T (2008) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235:259–272CrossRef Robinson JM, Takizawa T (2008) Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 235:259–272CrossRef
go back to reference Sesso A, de Faria FP, Iwamura ES, Corrêa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107:517–528PubMed Sesso A, de Faria FP, Iwamura ES, Corrêa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107:517–528PubMed
go back to reference Severinghaus AE (1933) A cytological study of the anterior pituitary of the rat, with specialreference to the Golgi apparatus and to cell relationship. Anat Rec 57:149–175CrossRef Severinghaus AE (1933) A cytological study of the anterior pituitary of the rat, with specialreference to the Golgi apparatus and to cell relationship. Anat Rec 57:149–175CrossRef
go back to reference Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041CrossRefPubMedPubMedCentral Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041CrossRefPubMedPubMedCentral
go back to reference Sjostrand FS, Hanzon V (1954) Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res 7:415–429CrossRefPubMed Sjostrand FS, Hanzon V (1954) Ultrastructure of Golgi apparatus of exocrine cells of mouse pancreas. Exp Cell Res 7:415–429CrossRefPubMed
go back to reference Storrie B, Micaroni M, Morgan GP, Jones N, Kamykowski JA, Wilkins N, Pan TH, Marsh BJ (2012) Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic 13:727–744CrossRefPubMedPubMedCentral Storrie B, Micaroni M, Morgan GP, Jones N, Kamykowski JA, Wilkins N, Pan TH, Marsh BJ (2012) Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic 13:727–744CrossRefPubMedPubMedCentral
go back to reference Strnad M, Elsterová J, Schrenková J, Vancová M, Rego RO, Grubhoffer L, Nebesářová J (2015) Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci Rep 5:18029CrossRefPubMedPubMedCentral Strnad M, Elsterová J, Schrenková J, Vancová M, Rego RO, Grubhoffer L, Nebesářová J (2015) Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci Rep 5:18029CrossRefPubMedPubMedCentral
go back to reference Takizawa T, Robinson JM (2003) Ultrathin cryosections: an important tool for immunofluorescence and correlative microscopy. J Histochem Cytochem 51:707–714CrossRefPubMed Takizawa T, Robinson JM (2003) Ultrathin cryosections: an important tool for immunofluorescence and correlative microscopy. J Histochem Cytochem 51:707–714CrossRefPubMed
go back to reference Tamaki H, Yamashina S (1991) Changes in cell polarity during mitosis in rat parotid acinar cells. J Histochem Cytochem 39:1077–1087CrossRefPubMed Tamaki H, Yamashina S (1991) Changes in cell polarity during mitosis in rat parotid acinar cells. J Histochem Cytochem 39:1077–1087CrossRefPubMed
go back to reference Tamaki H, Yamashina S (1997) Three-dimensional dynamics of the golgi apparatus in mitotic parotid acinar cells: computer-aided reconstruction from cytochemically-marked ultrathin serial sections. Acta Histochem Cytochem 30:643–651CrossRef Tamaki H, Yamashina S (1997) Three-dimensional dynamics of the golgi apparatus in mitotic parotid acinar cells: computer-aided reconstruction from cytochemically-marked ultrathin serial sections. Acta Histochem Cytochem 30:643–651CrossRef
go back to reference Tanaka K, Fukudome H (1991) Three-dimensional organization of the Golgi complex observed by scanning electron microscopy. J Electron Microsc Tech 17:15–23CrossRefPubMed Tanaka K, Fukudome H (1991) Three-dimensional organization of the Golgi complex observed by scanning electron microscopy. J Electron Microsc Tech 17:15–23CrossRefPubMed
go back to reference Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc 133:213–222CrossRefPubMed Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc 133:213–222CrossRefPubMed
go back to reference Tanaka K, Naguro T (1981) High resolution scanning electron microscopy of cell organelles by a new specimen preparation method. Biomed Res 2:63–70 Tanaka K, Naguro T (1981) High resolution scanning electron microscopy of cell organelles by a new specimen preparation method. Biomed Res 2:63–70
go back to reference Tanaka K, Iino A, Naguro T (1974) Styrene resin cracking method for observing biological materials by scanning electron microscopy. J Electron Microsc 23:313–315 Tanaka K, Iino A, Naguro T (1974) Styrene resin cracking method for observing biological materials by scanning electron microscopy. J Electron Microsc 23:313–315
go back to reference Tanaka K, Iino A, Naguro T (1976) Scanning electron microscopic observation on intracellular structures of ion-etched materials. Arch. Histol jap 39:165–175CrossRefPubMed Tanaka K, Iino A, Naguro T (1976) Scanning electron microscopic observation on intracellular structures of ion-etched materials. Arch. Histol jap 39:165–175CrossRefPubMed
go back to reference Tanaka K, Mitsushima A, Fukudome H, Kashima Y (1986) Three-dimensional architecture of the Golgi complex observed by high resolution scanning electron microscopy. J Submicrosc Cytol 18:1–9PubMed Tanaka K, Mitsushima A, Fukudome H, Kashima Y (1986) Three-dimensional architecture of the Golgi complex observed by high resolution scanning electron microscopy. J Submicrosc Cytol 18:1–9PubMed
go back to reference Takahashi-Iwanaga H, Fujita T (1986) Application of an NaOH maceration method to a scanning electron microscopic observation of Ito cells in the rat liver. Arch Histol Jpn 49:349–357CrossRefPubMed Takahashi-Iwanaga H, Fujita T (1986) Application of an NaOH maceration method to a scanning electron microscopic observation of Ito cells in the rat liver. Arch Histol Jpn 49:349–357CrossRefPubMed
go back to reference Tokunaga J, Edanaga M, Fujita T, Adachi K (1974) Freeze cracking of scanning electron microscope specimens. A study of the kidney and spleen. Arch Histol Jpn 37:165–182CrossRefPubMed Tokunaga J, Edanaga M, Fujita T, Adachi K (1974) Freeze cracking of scanning electron microscope specimens. A study of the kidney and spleen. Arch Histol Jpn 37:165–182CrossRefPubMed
go back to reference Tokuyasu KT (1989) Use of poly (vinylpyrrolidone) and poly (vinyl alcohol) for cryoultramicrotomy. Histochem J 21:163–171CrossRefPubMed Tokuyasu KT (1989) Use of poly (vinylpyrrolidone) and poly (vinyl alcohol) for cryoultramicrotomy. Histochem J 21:163–171CrossRefPubMed
go back to reference Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081CrossRefPubMed Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081CrossRefPubMed
go back to reference Ushiki T, Ide C (1988) A modified KOH-collagenase method applied to scanning electron microscopic observations of peripheral nerves. Arch Histol Cytol 51:223–232CrossRefPubMed Ushiki T, Ide C (1988) A modified KOH-collagenase method applied to scanning electron microscopic observations of peripheral nerves. Arch Histol Cytol 51:223–232CrossRefPubMed
go back to reference van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW (2007) Immunogold labeling of cryosections from high-pressure frozen cells. Traffic 8:471–485CrossRefPubMed van Donselaar E, Posthuma G, Zeuschner D, Humbel BM, Slot JW (2007) Immunogold labeling of cryosections from high-pressure frozen cells. Traffic 8:471–485CrossRefPubMed
go back to reference van Rijnsoever C, Oorschot V, Klumperman J (2008) Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat Methods 5:973–980CrossRefPubMed van Rijnsoever C, Oorschot V, Klumperman J (2008) Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nat Methods 5:973–980CrossRefPubMed
go back to reference Wacker I, Chockley P, Bartels C, Spomer W, Hofmann A, Gengenbach U, Singh S, Thaler M, Grabher C, Schröder RR (2015) Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure. J Microsc 259:105–113CrossRefPubMedPubMedCentral Wacker I, Chockley P, Bartels C, Spomer W, Hofmann A, Gengenbach U, Singh S, Thaler M, Grabher C, Schröder RR (2015) Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure. J Microsc 259:105–113CrossRefPubMedPubMedCentral
go back to reference Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka M, Ushiki T (2012) A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network. J Histochem Cytochem 60:588–602CrossRefPubMedPubMedCentral Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka M, Ushiki T (2012) A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network. J Histochem Cytochem 60:588–602CrossRefPubMedPubMedCentral
go back to reference Wilke SA, Antonios JK, Bushong EA, Badkoobehi A, Malek E, Hwang M, Terada M, Zankel A, Kraus B, Poelt P, Schaffer M, Ingolic E (2009) Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J Microsc 233:140–148CrossRef Wilke SA, Antonios JK, Bushong EA, Badkoobehi A, Malek E, Hwang M, Terada M, Zankel A, Kraus B, Poelt P, Schaffer M, Ingolic E (2009) Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J Microsc 233:140–148CrossRef
go back to reference Yamamoto K (1995) Sexual differences in the Golgi apparatus of rat hepatocytes: three-dimensional analysis. Cell Tissue Res 279:459–463CrossRefPubMed Yamamoto K (1995) Sexual differences in the Golgi apparatus of rat hepatocytes: three-dimensional analysis. Cell Tissue Res 279:459–463CrossRefPubMed
Metadata
Title
Novel scanning electron microscopy methods for analyzing the 3D structure of the Golgi apparatus
Authors
Daisuke Koga
Tatsuo Ushiki
Tsuyoshi Watanabe
Publication date
01-01-2017
Publisher
Springer Japan
Published in
Anatomical Science International / Issue 1/2017
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-016-0380-8

Other articles of this Issue 1/2017

Anatomical Science International 1/2017 Go to the issue