Skip to main content
Top
Published in: Critical Care 1/2017

Open Access 01-12-2017 | Research

Noninvasive detection of alarming intracranial pressure changes by auditory monitoring in early management of brain injury: a prospective invasive versus noninvasive study

Authors: Fabrice Giraudet, François Longeras, Aurélien Mulliez, Aurélie Thalamy, Bruno Pereira, Paul Avan, Laurent Sakka

Published in: Critical Care | Issue 1/2017

Login to get access

Abstract

Background

In brain-injured patients intracranial pressure (ICP) is monitored invasively by a ventricular or intraparenchymal transducer. The procedure requires specific expertise and exposes the patient to complications such as malposition, hemorrhage or infection. As inner-ear fluid compartments are connected to the cerebrospinal fluid space, ICP changes elicit subtle changes in the physiology of the inner ear. Notably, we previously demonstrated that the phase of cochlear microphonic potential (CM) generated by sound stimuli rotates with ICP. The aim of our study was to validate the monitoring of CM as a noninvasive method to follow ICP.

Methods

Non-invasive measure of CM-phase was compared to ICP recorded invasively in a prospective series of patients with acute brain injury managed in a neuro-intensive care unit. The study focused on patients with varying ICP and normal middle-ear function.

Results

In the 24 patients with less than 4 days of endotracheal ventilation and whose ICP fluctuated (50-hour data), we demonstrated close correlation between CM-phase rotation and ICP (average 1.26 degrees/mmHg). As a binary classifier, CM phase changes of 7–10 degrees signaled 7.5-mmHg ICP increases with a sensitivity of 83% and 19% fallout.

Conclusion

Reference methods to measure ICP require the surgical placement of a pressure transducer. Noninvasive CM-based monitoring of ICP might be beneficial to early management of brain-injured patients with initially preserved consciousness and to the diagnosis of neurological conditions, whenever invasive monitoring cannot be performed.

Trial registration

ClinicalTrials.gov NCT01685476, registered on 30 August 2012.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller JD, Stanek A, Langfitt TW. Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. Prog Brain Res. 1972;35:411–32.CrossRefPubMed Miller JD, Stanek A, Langfitt TW. Concepts of cerebral perfusion pressure and vascular compression during intracranial hypertension. Prog Brain Res. 1972;35:411–32.CrossRefPubMed
3.
go back to reference Guillaume J, Janny P. Continuous intracranial manometry; importance of the method and first results. Rev Neurol (Paris). 1951;84(2):131–42. Guillaume J, Janny P. Continuous intracranial manometry; importance of the method and first results. Rev Neurol (Paris). 1951;84(2):131–42.
4.
go back to reference Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the International Multidisciplinary Consensus Conference on Multimodality M. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21 Suppl 2:S64–84.CrossRefPubMed Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the International Multidisciplinary Consensus Conference on Multimodality M. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21 Suppl 2:S64–84.CrossRefPubMed
5.
go back to reference Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G, Diringer MN, Stocchetti N, Videtta W, Armonda R, et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21 Suppl 2:S282–296.CrossRefPubMed Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G, Diringer MN, Stocchetti N, Videtta W, Armonda R, et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21 Suppl 2:S282–296.CrossRefPubMed
6.
go back to reference Buki B, Avan P, Lemaire JJ, Dordain M, Chazal J, Ribari O. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements. Hear Res. 1996;94(1-2):125–39.CrossRefPubMed Buki B, Avan P, Lemaire JJ, Dordain M, Chazal J, Ribari O. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements. Hear Res. 1996;94(1-2):125–39.CrossRefPubMed
7.
go back to reference Avan P, Buki B, Maat B, Dordain M, Wit HP. Middle ear influence on otoacoustic emissions. I: noninvasive investigation of the human transmission apparatus and comparison with model results. Hear Res. 2000;140(1-2):189–201.CrossRefPubMed Avan P, Buki B, Maat B, Dordain M, Wit HP. Middle ear influence on otoacoustic emissions. I: noninvasive investigation of the human transmission apparatus and comparison with model results. Hear Res. 2000;140(1-2):189–201.CrossRefPubMed
8.
go back to reference Traboulsi R, Avan P. Transmission of infrasonic pressure waves from cerebrospinal to intralabyrinthine fluids through the human cochlear aqueduct: Non-invasive measurements with otoacoustic emissions. Hear Res. 2007;233(1-2):30–9.CrossRefPubMed Traboulsi R, Avan P. Transmission of infrasonic pressure waves from cerebrospinal to intralabyrinthine fluids through the human cochlear aqueduct: Non-invasive measurements with otoacoustic emissions. Hear Res. 2007;233(1-2):30–9.CrossRefPubMed
9.
go back to reference Buki B, Giraudet F, Avan P. Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions. Hear Res. 2009;251(1-2):51–9.CrossRefPubMed Buki B, Giraudet F, Avan P. Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions. Hear Res. 2009;251(1-2):51–9.CrossRefPubMed
10.
go back to reference Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003;99(2):324–33.CrossRefPubMed Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003;99(2):324–33.CrossRefPubMed
11.
go back to reference Avan P, Buki B, Petit C. Auditory distortions: origins and functions. Physiol Rev. 2013;93(4):1563–619.CrossRefPubMed Avan P, Buki B, Petit C. Auditory distortions: origins and functions. Physiol Rev. 2013;93(4):1563–619.CrossRefPubMed
12.
go back to reference Hamill-Ruth RJ, Ruth RA. Evaluation of audiologic impairment in critically ill patients: results of a screening protocol. Crit Care Med. 2003;31(9):2271–7.CrossRefPubMed Hamill-Ruth RJ, Ruth RA. Evaluation of audiologic impairment in critically ill patients: results of a screening protocol. Crit Care Med. 2003;31(9):2271–7.CrossRefPubMed
13.
go back to reference Cavaliere F, Masieri S, Liberini L, Proietti R, Magalini SI. Tympanometry for middle-ear effusion in unconscious ICU patients. Eur J Anaesthesiol. 1992;9(1):71–5.PubMed Cavaliere F, Masieri S, Liberini L, Proietti R, Magalini SI. Tympanometry for middle-ear effusion in unconscious ICU patients. Eur J Anaesthesiol. 1992;9(1):71–5.PubMed
14.
go back to reference Kashif FM, Verghese GC, Novak V, Czosnyka M, Heldt T. Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci Transl Med. 2012;4(129):129ra144.CrossRef Kashif FM, Verghese GC, Novak V, Czosnyka M, Heldt T. Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure. Sci Transl Med. 2012;4(129):129ra144.CrossRef
15.
go back to reference Probst R. Electrocochleography: using extratympanic or transtympanic methods? ORL J Otorhinolaryngol Relat Spec. 1983;45(6):322–9.CrossRefPubMed Probst R. Electrocochleography: using extratympanic or transtympanic methods? ORL J Otorhinolaryngol Relat Spec. 1983;45(6):322–9.CrossRefPubMed
16.
go back to reference Popovic D, Khoo M, Lee S. Noninvasive monitoring of intracranial pressure. Recent Patents Biomed Eng. 2009;2:165–79.CrossRef Popovic D, Khoo M, Lee S. Noninvasive monitoring of intracranial pressure. Recent Patents Biomed Eng. 2009;2:165–79.CrossRef
17.
go back to reference Firsching R, Muller C, Pauli SU, Voellger B, Rohl FW, Behrens-Baumann W. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. Clinical article. J Neurosurg. 2011;115(2):371–4.CrossRefPubMed Firsching R, Muller C, Pauli SU, Voellger B, Rohl FW, Behrens-Baumann W. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. Clinical article. J Neurosurg. 2011;115(2):371–4.CrossRefPubMed
18.
go back to reference Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, Daubaris G. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78(21):1684–91.CrossRefPubMed Ragauskas A, Matijosaitis V, Zakelis R, Petrikonis K, Rastenyte D, Piper I, Daubaris G. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78(21):1684–91.CrossRefPubMed
19.
go back to reference Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien). 2006;148(4):435–41.CrossRef Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-Garcia R, Allut AG, Bandin-Dieguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien). 2006;148(4):435–41.CrossRef
20.
go back to reference Raboel PH, Bartek Jr J, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods - a review. Crit Care Res Pract. 2012;2012:950393.PubMedPubMedCentral Raboel PH, Bartek Jr J, Andresen M, Bellander BM, Romner B. Intracranial pressure monitoring: invasive versus non-invasive methods - a review. Crit Care Res Pract. 2012;2012:950393.PubMedPubMedCentral
Metadata
Title
Noninvasive detection of alarming intracranial pressure changes by auditory monitoring in early management of brain injury: a prospective invasive versus noninvasive study
Authors
Fabrice Giraudet
François Longeras
Aurélien Mulliez
Aurélie Thalamy
Bruno Pereira
Paul Avan
Laurent Sakka
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2017
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-017-1616-2

Other articles of this Issue 1/2017

Critical Care 1/2017 Go to the issue