Skip to main content
Top
Published in: Neuroscience Bulletin 2/2017

Open Access 01-04-2017 | Review

Non-human Primate Models for Brain Disorders – Towards Genetic Manipulations via Innovative Technology

Authors: Zilong Qiu, Xiao Li

Published in: Neuroscience Bulletin | Issue 2/2017

Login to get access

Abstract

Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.
Literature
2.
go back to reference de la Torre-Ubieta L, Won HJ, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016, 22: 345–361.CrossRefPubMedPubMedCentral de la Torre-Ubieta L, Won HJ, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016, 22: 345–361.CrossRefPubMedPubMedCentral
3.
go back to reference Kalin NH, Shelton SE. Defensive behaviors in infant rhesus-monkeys - environmental cues and neurochemical regulation. Science 1989, 243: 1718–1721.CrossRefPubMed Kalin NH, Shelton SE. Defensive behaviors in infant rhesus-monkeys - environmental cues and neurochemical regulation. Science 1989, 243: 1718–1721.CrossRefPubMed
4.
go back to reference Feng X, Wang L, Yang S, Qin D, Wang J, Li C, et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc Natl Acad Sci USA 2011, 108: 14312–14317.CrossRefPubMedPubMedCentral Feng X, Wang L, Yang S, Qin D, Wang J, Li C, et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc Natl Acad Sci USA 2011, 108: 14312–14317.CrossRefPubMedPubMedCentral
5.
go back to reference Suomi SJ. Risk, resilience, and gene x environment interactions in rhesus monkeys. Ann NY Acad Sci 2006, 1094: 52–62.CrossRefPubMed Suomi SJ. Risk, resilience, and gene x environment interactions in rhesus monkeys. Ann NY Acad Sci 2006, 1094: 52–62.CrossRefPubMed
6.
go back to reference Watson KK, Platt ML. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012, 4: 21.CrossRefPubMedPubMedCentral Watson KK, Platt ML. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012, 4: 21.CrossRefPubMedPubMedCentral
7.
go back to reference Chan AWS, Chong KY, Martinovich C, Simerly C, Schatten G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 2001, 291: 309–312.CrossRefPubMed Chan AWS, Chong KY, Martinovich C, Simerly C, Schatten G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 2001, 291: 309–312.CrossRefPubMed
8.
go back to reference Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng ECH, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 2008, 453: 921–924.CrossRefPubMedPubMedCentral Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng ECH, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 2008, 453: 921–924.CrossRefPubMedPubMedCentral
9.
go back to reference Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, et al. Generation of transgenic non-human primates with germline transmission. Nature 2009, 459: 523–527.CrossRefPubMed Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, et al. Generation of transgenic non-human primates with germline transmission. Nature 2009, 459: 523–527.CrossRefPubMed
10.
go back to reference Niu YY, Guo XY, Chen YC, Wang CE, Gao JQ, Yang WL, et al. Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 2015, 24: 2308–2317.CrossRefPubMed Niu YY, Guo XY, Chen YC, Wang CE, Gao JQ, Yang WL, et al. Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 2015, 24: 2308–2317.CrossRefPubMed
11.
go back to reference Yang WL, Wang GH, Wang CE, Guo XY, Yin P, Gao JQ, et al. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 2015, 35: 8345–8358.CrossRefPubMedPubMedCentral Yang WL, Wang GH, Wang CE, Guo XY, Yin P, Gao JQ, et al. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain. J Neurosci 2015, 35: 8345–8358.CrossRefPubMedPubMedCentral
12.
go back to reference Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 2016, 530: 98–102.CrossRefPubMed Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 2016, 530: 98–102.CrossRefPubMed
13.
go back to reference Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014, 156: 836–843.CrossRefPubMed Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014, 156: 836–843.CrossRefPubMed
14.
go back to reference Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 2015, 24: 3764–3774.PubMedPubMedCentral Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 2015, 24: 3764–3774.PubMedPubMedCentral
15.
go back to reference Liu HL, Chen YC, Niu YY, Zhang KS, Kang Y, Ge WH, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014, 14: 323–328.CrossRefPubMedPubMedCentral Liu HL, Chen YC, Niu YY, Zhang KS, Kang Y, Ge WH, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014, 14: 323–328.CrossRefPubMedPubMedCentral
16.
go back to reference Liu Z, Zhou X, Zhu Y, Chen ZF, Yu B, Wang Y, et al. Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neurosci Bull 2014, 30: 381–386.CrossRefPubMed Liu Z, Zhou X, Zhu Y, Chen ZF, Yu B, Wang Y, et al. Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neurosci Bull 2014, 30: 381–386.CrossRefPubMed
17.
go back to reference Lv Q, Yang LQ, Li GL, Wang ZW, Shen ZM, Yu WW, et al. Large-scale persistent network reconfiguration induced by ketamine in anesthetized monkeys: relevance to mood disorders. Biol Psychiatry 2016, 79: 765–775.CrossRefPubMed Lv Q, Yang LQ, Li GL, Wang ZW, Shen ZM, Yu WW, et al. Large-scale persistent network reconfiguration induced by ketamine in anesthetized monkeys: relevance to mood disorders. Biol Psychiatry 2016, 79: 765–775.CrossRefPubMed
Metadata
Title
Non-human Primate Models for Brain Disorders – Towards Genetic Manipulations via Innovative Technology
Authors
Zilong Qiu
Xiao Li
Publication date
01-04-2017
Publisher
Springer Singapore
Published in
Neuroscience Bulletin / Issue 2/2017
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-017-0115-4

Other articles of this Issue 2/2017

Neuroscience Bulletin 2/2017 Go to the issue