Skip to main content
Top
Published in: BMC Medical Imaging 1/2014

Open Access 01-12-2014 | Technical advance

Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions

Authors: Chenyi Liu, Alexander Wong, Paul Fieguth, Kostadinka Bizheva, Hongxia Bie

Published in: BMC Medical Imaging | Issue 1/2014

Login to get access

Abstract

Background

Optical coherence tomography (OCT) is a minimally invasive imaging technique, which utilizes the spatial and temporal coherence properties of optical waves backscattered from biological material. Recent advances in tunable lasers and infrared camera technologies have enabled an increase in the OCT imaging speed by a factor of more than 100, which is important for retinal imaging where we wish to study fast physiological processes in the biological tissue. However, the high scanning rate causes proportional decrease of the detector exposure time, resulting in a reduction of the system signal-to-noise ratio (SNR). One approach to improving the image quality of OCT tomograms acquired at high speed is to compensate for the noise component in the images without compromising the sharpness of the image details.

Methods

In this study, we propose a novel reconstruction method for rapid OCT image acquisitions, based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy. The performance of the algorithm was tested on a series of high resolution OCT images of the human retina acquired at different imaging rates.

Results

Quantitative analysis was used to evaluate the performance of the algorithm using two state-of-art denoising strategies. Results demonstrate significant SNR improvements when using our proposed approach when compared to other approaches.

Conclusions

A new reconstruction method based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy was developed for the purpose of improving the quality of rapid OCT image acquisitions. Preliminary results show the proposed method shows considerable promise as a tool to improve the visualization and analysis of biological material using OCT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG: Optical coherence tomography. Science. 1991, 254 (5035): 1178-1181. 10.1126/science.1957169.CrossRefPubMedPubMedCentral Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG: Optical coherence tomography. Science. 1991, 254 (5035): 1178-1181. 10.1126/science.1957169.CrossRefPubMedPubMedCentral
2.
go back to reference Leitgeb R, Hitzenberger C, Fercher A: Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003, 11 (8): 889-894. 10.1364/OE.11.000889.CrossRefPubMed Leitgeb R, Hitzenberger C, Fercher A: Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003, 11 (8): 889-894. 10.1364/OE.11.000889.CrossRefPubMed
3.
go back to reference Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R: Multi-megahertz oct: High quality 3d imaging at 20 million a-scans and 4.5 gvoxels per second. Opt Express. 2010, 18 (14): 14685-14704. 10.1364/OE.18.014685.CrossRefPubMed Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R: Multi-megahertz oct: High quality 3d imaging at 20 million a-scans and 4.5 gvoxels per second. Opt Express. 2010, 18 (14): 14685-14704. 10.1364/OE.18.014685.CrossRefPubMed
4.
go back to reference Puvanathasan P, Bizheva K: Speckle noise reduction algorithm for optical coherence tomography based on interval type ii fuzzy set. Opt Express. 2007, 15: 15747-15758. 10.1364/OE.15.015747.CrossRefPubMed Puvanathasan P, Bizheva K: Speckle noise reduction algorithm for optical coherence tomography based on interval type ii fuzzy set. Opt Express. 2007, 15: 15747-15758. 10.1364/OE.15.015747.CrossRefPubMed
5.
go back to reference Mishra A, Wong A, Bizheva K, Clausi D: Intra-retinal layer segmentation in optical coherence tomography images. Opt Express. 2009, 17 (26): 23719-23728. 10.1364/OE.17.023719.CrossRefPubMed Mishra A, Wong A, Bizheva K, Clausi D: Intra-retinal layer segmentation in optical coherence tomography images. Opt Express. 2009, 17 (26): 23719-23728. 10.1364/OE.17.023719.CrossRefPubMed
6.
go back to reference Wong A, Mishra A, Bizheva K, Clausi D: General bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express. 2010, 18 (8): 8338-8352. 10.1364/OE.18.008338.CrossRefPubMed Wong A, Mishra A, Bizheva K, Clausi D: General bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express. 2010, 18 (8): 8338-8352. 10.1364/OE.18.008338.CrossRefPubMed
7.
go back to reference Puvanathasan P, Bizheva K: Interval type-ii fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images. Opt Express. 2009, 17 (2): 733-746. 10.1364/OE.17.000733.CrossRefPubMed Puvanathasan P, Bizheva K: Interval type-ii fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images. Opt Express. 2009, 17 (2): 733-746. 10.1364/OE.17.000733.CrossRefPubMed
8.
go back to reference Boroomand A, Glaister J, Wong A, Cameron A, Lui D, Bizheva K: Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling. Biomedical Optics Express. 2013, 4 (9): 1769-1785. 10.1364/BOE.4.001769.CrossRefPubMedPubMedCentral Boroomand A, Glaister J, Wong A, Cameron A, Lui D, Bizheva K: Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling. Biomedical Optics Express. 2013, 4 (9): 1769-1785. 10.1364/BOE.4.001769.CrossRefPubMedPubMedCentral
9.
go back to reference Izatt JA, Choma MA: Theory of optical coherence tomography.Optical Coherence Tomography: Technology and Applications. Edited by: Drexler W, Fujimoto JG. 2008, Heidelberg: Springer, Izatt JA, Choma MA: Theory of optical coherence tomography.Optical Coherence Tomography: Technology and Applications. Edited by: Drexler W, Fujimoto JG. 2008, Heidelberg: Springer,
10.
go back to reference Choma M, Sarunic M, Yang C, Izatt J: Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt Express. 2003, 11 (18): 2183-2189. 10.1364/OE.11.002183.CrossRefPubMed Choma M, Sarunic M, Yang C, Izatt J: Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt Express. 2003, 11 (18): 2183-2189. 10.1364/OE.11.002183.CrossRefPubMed
11.
go back to reference Jadwiga Rogowska MEB: Image processing techniques for noise removal, enhancement and segmentation of cartilage oct images. Phys Med Biol. 2002, 47 (4): 641-655. 10.1088/0031-9155/47/4/307.CrossRefPubMed Jadwiga Rogowska MEB: Image processing techniques for noise removal, enhancement and segmentation of cartilage oct images. Phys Med Biol. 2002, 47 (4): 641-655. 10.1088/0031-9155/47/4/307.CrossRefPubMed
12.
go back to reference Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA: Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. J Opt Soc Am. 2009, 147 (2): 364-373. Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA: Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. J Opt Soc Am. 2009, 147 (2): 364-373.
13.
go back to reference Eichel J, Lee D, Wong A, Fieguth P, Clausi D, Bizheva K: Quantitative comparison of despeckling and frame averaging approaches to processing retinal oct tomograms. Proceedings of SPIE Photonics West (BiOS). 2011, Eichel J, Lee D, Wong A, Fieguth P, Clausi D, Bizheva K: Quantitative comparison of despeckling and frame averaging approaches to processing retinal oct tomograms. Proceedings of SPIE Photonics West (BiOS). 2011,
14.
go back to reference Lin A, Peng L, Tueng TS, Ruikang W: High speed spectral domain optical coherence tomography for retinal imaging at 500,000 a-lines per second. Biomed Opt Express. 2011, 2 (10): 2770-2783. 10.1364/BOE.2.002770.CrossRef Lin A, Peng L, Tueng TS, Ruikang W: High speed spectral domain optical coherence tomography for retinal imaging at 500,000 a-lines per second. Biomed Opt Express. 2011, 2 (10): 2770-2783. 10.1364/BOE.2.002770.CrossRef
15.
go back to reference Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ: Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am. 2007, 24 (7): 1901-1910. 10.1364/JOSAA.24.001901.CrossRef Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ: Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am. 2007, 24 (7): 1901-1910. 10.1364/JOSAA.24.001901.CrossRef
16.
go back to reference Wong A, Mishra A, Fieguth P, Clausi D: An adaptive monte carlo approach to nonlinear image denoising. Proc Int Conf Pattern Recognit. 2008, 33: 1-4.CrossRef Wong A, Mishra A, Fieguth P, Clausi D: An adaptive monte carlo approach to nonlinear image denoising. Proc Int Conf Pattern Recognit. 2008, 33: 1-4.CrossRef
17.
go back to reference Wong A, Fieguth P, Clausi D: A perceptually adaptive approach to image denoising using anisotropic non-local means. Proc Int Conf Image Process. 2008, 33: 1-4. Wong A, Fieguth P, Clausi D: A perceptually adaptive approach to image denoising using anisotropic non-local means. Proc Int Conf Image Process. 2008, 33: 1-4.
18.
go back to reference Wong A, Mishra A, Zhang W, Fieguth P, Clausi D: Stochastic image denoising based on markov-chain monte carlo sampling. Signal Process. 2011, 91 (8): 2112-2120. 10.1016/j.sigpro.2011.03.021.CrossRef Wong A, Mishra A, Zhang W, Fieguth P, Clausi D: Stochastic image denoising based on markov-chain monte carlo sampling. Signal Process. 2011, 91 (8): 2112-2120. 10.1016/j.sigpro.2011.03.021.CrossRef
19.
go back to reference Wong A: Adaptive bilateral filtering of image signals using local phase characteristics. Signal Process. 2008, 88 (6): 1615-1619. 10.1016/j.sigpro.2008.01.002.CrossRef Wong A: Adaptive bilateral filtering of image signals using local phase characteristics. Signal Process. 2008, 88 (6): 1615-1619. 10.1016/j.sigpro.2008.01.002.CrossRef
20.
go back to reference Pizurica A, Philips W, Lemahieu I, Acheroy M: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imag. 2003, 22 (3): 323-331. 10.1109/TMI.2003.809588.CrossRef Pizurica A, Philips W, Lemahieu I, Acheroy M: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imag. 2003, 22 (3): 323-331. 10.1109/TMI.2003.809588.CrossRef
21.
go back to reference Rabbani H, Vafadust M, Abolmaesumi P, Gazor S: Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Trans Biomed Eng. 2008, 55 (9): 2152-2160.CrossRefPubMed Rabbani H, Vafadust M, Abolmaesumi P, Gazor S: Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Trans Biomed Eng. 2008, 55 (9): 2152-2160.CrossRefPubMed
22.
go back to reference Zhou D, Cheng W: Image denoising with an optimal threshold and neighbouring window. Pattern Recogn Lett. 2008, 29 (11): 1694-1697. 10.1016/j.patrec.2008.04.014.CrossRef Zhou D, Cheng W: Image denoising with an optimal threshold and neighbouring window. Pattern Recogn Lett. 2008, 29 (11): 1694-1697. 10.1016/j.patrec.2008.04.014.CrossRef
23.
go back to reference Fiddy MA, Fried NM: Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform. J Biomed Optics. 2009, 14 (1): 014031-10.1117/1.3081543.CrossRef Fiddy MA, Fried NM: Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform. J Biomed Optics. 2009, 14 (1): 014031-10.1117/1.3081543.CrossRef
24.
go back to reference Jian Z, Yu L, Rao B, Tromberg BJ, Chen Z: Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform. Opt Express. 2010, 18 (2): 1024-1032. 10.1364/OE.18.001024.CrossRefPubMedPubMedCentral Jian Z, Yu L, Rao B, Tromberg BJ, Chen Z: Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform. Opt Express. 2010, 18 (2): 1024-1032. 10.1364/OE.18.001024.CrossRefPubMedPubMedCentral
25.
go back to reference Mayer MA, Borsdorf A, Wagner M, Hornegger J, Mardin CY, Tornow RP: Wavelet denoising of multiframe optical coherence tomography data. Biomed Opt Express. 2012, 3 (3): 572-589. 10.1364/BOE.3.000572.CrossRefPubMedPubMedCentral Mayer MA, Borsdorf A, Wagner M, Hornegger J, Mardin CY, Tornow RP: Wavelet denoising of multiframe optical coherence tomography data. Biomed Opt Express. 2012, 3 (3): 572-589. 10.1364/BOE.3.000572.CrossRefPubMedPubMedCentral
26.
go back to reference Fang L, Li S, Nie Q, Izatt JA, Toth CA, Farsiu S: Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Optics Express. 2013, 3 (5): 927-942.CrossRef Fang L, Li S, Nie Q, Izatt JA, Toth CA, Farsiu S: Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Optics Express. 2013, 3 (5): 927-942.CrossRef
27.
go back to reference Fang L, Li S, Nie Q, Kuo AN, Izatt JA, Toth CA, Farsiu S: Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans Med Imaging. 2013, 32 (11): 2034-2049.CrossRefPubMedPubMedCentral Fang L, Li S, Nie Q, Kuo AN, Izatt JA, Toth CA, Farsiu S: Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans Med Imaging. 2013, 32 (11): 2034-2049.CrossRefPubMedPubMedCentral
28.
go back to reference Liu C, Wong A, Bizheva K, Fieguth P, Bie H: Homotopic, non-local sparse reconstruction of optical coherence tomography imagery. Opt Express. 2012, 20 (9): 10200-10211. 10.1364/OE.20.010200.CrossRefPubMed Liu C, Wong A, Bizheva K, Fieguth P, Bie H: Homotopic, non-local sparse reconstruction of optical coherence tomography imagery. Opt Express. 2012, 20 (9): 10200-10211. 10.1364/OE.20.010200.CrossRefPubMed
29.
go back to reference James W, Stein C: Estimation with quadratic loss. Proc Fourth Berkeley Symp Math Stat Probability. 1961, 1 (36): 361-379. James W, Stein C: Estimation with quadratic loss. Proc Fourth Berkeley Symp Math Stat Probability. 1961, 1 (36): 361-379.
30.
go back to reference Wu Y, Tracey B, Natarajan P, Noonan J: James-stein type center pixel weights for non-local means image denoising. IEEE Signal Process Lett. 2013, 20 (4): 411-414.CrossRef Wu Y, Tracey B, Natarajan P, Noonan J: James-stein type center pixel weights for non-local means image denoising. IEEE Signal Process Lett. 2013, 20 (4): 411-414.CrossRef
31.
go back to reference Rosenbloom P: The method of steepest descent. Proc Symp Appl Math. 1956, 6: 127-176.CrossRef Rosenbloom P: The method of steepest descent. Proc Symp Appl Math. 1956, 6: 127-176.CrossRef
32.
go back to reference Wang X: Method of steepest descent and its applications. IEEE Microw Wireless Components Lett. 2008, 12: 24-26. Wang X: Method of steepest descent and its applications. IEEE Microw Wireless Components Lett. 2008, 12: 24-26.
33.
go back to reference Puvanathasan P, Forbes P, Zhao R, Malchow D, Boyd S, Bizheva K: High-speed, high-resolution fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. Opt Lett. 2008, 33: 2479-2481.CrossRefPubMed Puvanathasan P, Forbes P, Zhao R, Malchow D, Boyd S, Bizheva K: High-speed, high-resolution fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. Opt Lett. 2008, 33: 2479-2481.CrossRefPubMed
34.
go back to reference Dabov K, Foi A, Katkovnik V, Egiazarian K: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans Image Process. 2007, 16 (8): 2080-2095.CrossRefPubMed Dabov K, Foi A, Katkovnik V, Egiazarian K: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans Image Process. 2007, 16 (8): 2080-2095.CrossRefPubMed
35.
go back to reference Adler DC, Ko TH, Fujimoto JG: Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt Lett. 2004, 29 (24): 2878-2880. 10.1364/OL.29.002878.CrossRefPubMed Adler DC, Ko TH, Fujimoto JG: Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt Lett. 2004, 29 (24): 2878-2880. 10.1364/OL.29.002878.CrossRefPubMed
Metadata
Title
Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions
Authors
Chenyi Liu
Alexander Wong
Paul Fieguth
Kostadinka Bizheva
Hongxia Bie
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2014
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/1471-2342-14-37

Other articles of this Issue 1/2014

BMC Medical Imaging 1/2014 Go to the issue