Skip to main content
Top
Published in: Neurotoxicity Research 2/2015

01-08-2015 | Original Article

NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a

Authors: Su Gao, Yang Yu, Zhi-Yuan Ma, Hui Sun, Yong-Li Zhang, Xing-Tao Wang, Chaoyun Wang, Wei-Ming Fan, Qing-Yin Zheng, Chun-Lei Ma

Published in: Neurotoxicity Research | Issue 2/2015

Login to get access

Abstract

NMDARs and ASIC1a both exist in central synapses and mediate important physiological and pathological conditions, but the functional relationship between them is unclear. Here we report several novel findings that may shed light on the functional relationship between these two ion channels in the excitatory postsynaptic membrane of mouse hippocampus. Firstly, NMDAR activation induced by either NMDA or OGD led to increased [Ca2+]i and greater apoptotic and necrotic cell deaths in cultured hippocampal neurons; these cell deaths were prevented by application of NMDAR antagonists. Secondly, ASIC1a activation induced by pH 6.0 extracellular solution (ECS) showed similar increases in apoptotic and necrotic cell deaths; these cell deaths were prevented by ASIC1a antagonists, and also by NMDAR antagonists. Since increased [Ca2+]i leads to increased cell deaths and since NMDAR exhibits much greater calcium permeability than ASIC1a, these data suggest that ASIC1a-induced neuronal death is mediated through activation of NMDARs. Thirdly, treatment of hippocampal cultures with both NMDA and acidic ECS induced greater degrees of cell deaths than either NMDA or acidic ECS treatment alone. These results suggest that ASIC1a activation up-regulates NMDAR function. Additional data supporting the functional relationship between ASIC1a and NMDAR are found in our electrophysiology experiments in hippocampal slices, where stimulation of ASIC1a induced a marked increase in NMDAR EPSC amplitude, and inhibition of ASIC1a resulted in a decrease in NMDAR EPSC amplitude. In summary, we present evidence that ASIC1a activity facilitates NMDAR function and exacerbates NMDAR-mediated neuronal death in pathological conditions. These findings are invaluable to the search for novel therapeutic targets in the treatment of brain ischemia.
Appendix
Available only for authorised users
Literature
go back to reference Alvarez de la Rosa D, Zhang P et al (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci USA 99(4):2326–2331PubMedCentralPubMedCrossRef Alvarez de la Rosa D, Zhang P et al (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci USA 99(4):2326–2331PubMedCentralPubMedCrossRef
go back to reference Alvarez de la Rosa D, Krueger SR et al (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546(Pt 1):77–87PubMedCrossRef Alvarez de la Rosa D, Krueger SR et al (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546(Pt 1):77–87PubMedCrossRef
go back to reference Areosa SA, Sherriff F et al (2005) Memantine for dementia. Cochrane Database Syst Rev 2006(2):CD003154 Areosa SA, Sherriff F et al (2005) Memantine for dementia. Cochrane Database Syst Rev 2006(2):CD003154
go back to reference Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668PubMedCrossRef Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668PubMedCrossRef
go back to reference Baron A, Voilley N et al (2008) Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 28(6):1498–1508PubMedCrossRef Baron A, Voilley N et al (2008) Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 28(6):1498–1508PubMedCrossRef
go back to reference Bassler EL, Ngo-Anh TJ et al (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276(36):33782–33787PubMedCrossRef Bassler EL, Ngo-Anh TJ et al (2001) Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem 276(36):33782–33787PubMedCrossRef
go back to reference Brookes PS, Yoon Y et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833PubMedCrossRef Brookes PS, Yoon Y et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):C817–C833PubMedCrossRef
go back to reference Broughton BR, Reutens DC et al (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331–e339PubMedCrossRef Broughton BR, Reutens DC et al (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331–e339PubMedCrossRef
go back to reference Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58(3):293–297PubMedCrossRef Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58(3):293–297PubMedCrossRef
go back to reference Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7(2):369–379PubMed Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7(2):369–379PubMed
go back to reference Cull-Candy S, Brickley S et al (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335PubMedCrossRef Cull-Candy S, Brickley S et al (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335PubMedCrossRef
go back to reference DeVries SH (2001) Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32(6):1107–1117PubMedCrossRef DeVries SH (2001) Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32(6):1107–1117PubMedCrossRef
go back to reference Diochot S, Salinas M et al (2007) Peptides inhibitors of acid-sensing ion channels. Toxicon 49(2):271–284PubMedCrossRef Diochot S, Salinas M et al (2007) Peptides inhibitors of acid-sensing ion channels. Toxicon 49(2):271–284PubMedCrossRef
go back to reference Erreger K, Dravid SM et al (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563(Pt 2):345–358PubMedCentralPubMedCrossRef Erreger K, Dravid SM et al (2005) Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563(Pt 2):345–358PubMedCentralPubMedCrossRef
go back to reference Forrest D, Yuzaki M et al (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13(2):325–338PubMedCrossRef Forrest D, Yuzaki M et al (1994) Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron 13(2):325–338PubMedCrossRef
go back to reference Gao J, Duan B et al (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48(4):635–646PubMedCrossRef Gao J, Duan B et al (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48(4):635–646PubMedCrossRef
go back to reference Halestrap AP, Clarke SJ et al (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385PubMedCrossRef Halestrap AP, Clarke SJ et al (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385PubMedCrossRef
go back to reference Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26(2):81–89PubMedCrossRef Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26(2):81–89PubMedCrossRef
go back to reference Iino M, Ozawa S et al (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol 424:151–165PubMedCentralPubMedCrossRef Iino M, Ozawa S et al (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol 424:151–165PubMedCentralPubMedCrossRef
go back to reference Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1(6):383–386PubMedCrossRef Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1(6):383–386PubMedCrossRef
go back to reference Ikonomidou C, Mosinger JL et al (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9(8):2809–2818PubMed Ikonomidou C, Mosinger JL et al (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9(8):2809–2818PubMed
go back to reference Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531PubMedCrossRef Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531PubMedCrossRef
go back to reference Kohara K, Kitamura A et al (2001) Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291(5512):2419–2423PubMedCrossRef Kohara K, Kitamura A et al (2001) Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291(5512):2419–2423PubMedCrossRef
go back to reference Kovalchuk Yu N, Krishtal OA et al (1990) The proton-activated inward current of rat sensory neurons includes a calcium component. Neurosci Lett 115(2–3):237–242PubMedCrossRef Kovalchuk Yu N, Krishtal OA et al (1990) The proton-activated inward current of rat sensory neurons includes a calcium component. Neurosci Lett 115(2–3):237–242PubMedCrossRef
go back to reference Krishtal OA, Osipchuk YV et al (1987) Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res 436(2):352–356PubMedCrossRef Krishtal OA, Osipchuk YV et al (1987) Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res 436(2):352–356PubMedCrossRef
go back to reference Lai TW, Zhang S et al (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188PubMedCrossRef Lai TW, Zhang S et al (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188PubMedCrossRef
go back to reference Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542PubMedCrossRef Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542PubMedCrossRef
go back to reference Lee JM et al (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(6738 suppl):A7–A14.PubMedCrossRef Lee JM et al (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(6738 suppl):A7–A14.PubMedCrossRef
go back to reference Linden R (1994) The survival of developing neurons: a review of afferent control. Neuroscience 58(4):671–682PubMedCrossRef Linden R (1994) The survival of developing neurons: a review of afferent control. Neuroscience 58(4):671–682PubMedCrossRef
go back to reference Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330(9):613–622PubMedCrossRef Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330(9):613–622PubMedCrossRef
go back to reference Liu Y, Wong TP et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846–2857PubMedCrossRef Liu Y, Wong TP et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846–2857PubMedCrossRef
go back to reference MacDermott AB, Mayer ML et al (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321(6069):519–522PubMedCrossRef MacDermott AB, Mayer ML et al (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321(6069):519–522PubMedCrossRef
go back to reference Makhro A et al (2010) Functional NMDA receptors in rat erythrocytes. Am J Physiol Cell Physiol 298(6):C1315–C1325PubMedCrossRef Makhro A et al (2010) Functional NMDA receptors in rat erythrocytes. Am J Physiol Cell Physiol 298(6):C1315–C1325PubMedCrossRef
go back to reference Manev H, Favaron M et al (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36(1):106–112PubMed Manev H, Favaron M et al (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36(1):106–112PubMed
go back to reference Marcoux FW, Probert AW Jr et al (1990) Hypoxic neuronal injury in tissue culture is associated with delayed calcium accumulation. Stroke 21(11 Suppl):III71–III74PubMed Marcoux FW, Probert AW Jr et al (1990) Hypoxic neuronal injury in tissue culture is associated with delayed calcium accumulation. Stroke 21(11 Suppl):III71–III74PubMed
go back to reference Mayer ML, Vyklicky L Jr (1989) The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol 415:351–365PubMedCentralPubMedCrossRef Mayer ML, Vyklicky L Jr (1989) The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol 415:351–365PubMedCentralPubMedCrossRef
go back to reference Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527PubMedCentralPubMedCrossRef Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527PubMedCentralPubMedCrossRef
go back to reference Mayer ML, Westbrook GL et al (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263PubMedCrossRef Mayer ML, Westbrook GL et al (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263PubMedCrossRef
go back to reference Neaga E, Amuzescu B et al (2005) Extracellular trypsin increases ASIC1a selectivity for monovalent versus divalent cations. J Neurosci Methods 144(2):241–248PubMedCrossRef Neaga E, Amuzescu B et al (2005) Extracellular trypsin increases ASIC1a selectivity for monovalent versus divalent cations. J Neurosci Methods 144(2):241–248PubMedCrossRef
go back to reference Parsons CG, Danysz W et al (1999) Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38(6):735–767PubMedCrossRef Parsons CG, Danysz W et al (1999) Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38(6):735–767PubMedCrossRef
go back to reference Rock DM, Macdonald RL (1992) The polyamine spermine has multiple actions on N-methyl-d-aspartate receptor single-channel currents in cultured cortical neurons. Mol Pharmacol 41(1):83–88PubMed Rock DM, Macdonald RL (1992) The polyamine spermine has multiple actions on N-methyl-d-aspartate receptor single-channel currents in cultured cortical neurons. Mol Pharmacol 41(1):83–88PubMed
go back to reference Sattler R, Xiong Z et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848PubMedCrossRef Sattler R, Xiong Z et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848PubMedCrossRef
go back to reference Schanne FA et al (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206(4419):700–702PubMedCrossRef Schanne FA et al (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206(4419):700–702PubMedCrossRef
go back to reference Sherwood TW, Lee KG et al (2011) Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 31(26):9723–9734PubMedCentralPubMedCrossRef Sherwood TW, Lee KG et al (2011) Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 31(26):9723–9734PubMedCentralPubMedCrossRef
go back to reference Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129PubMedCrossRef Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129PubMedCrossRef
go back to reference Traynelis SF, Chesler M (2001) Proton release as a modulator of presynaptic function. Neuron 32(6):960–962PubMedCrossRef Traynelis SF, Chesler M (2001) Proton release as a modulator of presynaptic function. Neuron 32(6):960–962PubMedCrossRef
go back to reference Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345(6273):347–350PubMedCrossRef Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345(6273):347–350PubMedCrossRef
go back to reference Traynelis SF, Cull-Candy SG (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 433:727–763PubMedCentralPubMedCrossRef Traynelis SF, Cull-Candy SG (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol 433:727–763PubMedCentralPubMedCrossRef
go back to reference Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8(3):418–424PubMedCrossRef Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8(3):418–424PubMedCrossRef
go back to reference Waldmann R, Champigny G et al (1997) A proton-gated cation channel involved in acid-sensing. Nature 386(6621):173–177PubMedCrossRef Waldmann R, Champigny G et al (1997) A proton-gated cation channel involved in acid-sensing. Nature 386(6621):173–177PubMedCrossRef
go back to reference Waldmann R, Champigny G et al (1999) H(+)-gated cation channels. Ann New York Acad Sci 868:67–76CrossRef Waldmann R, Champigny G et al (1999) H(+)-gated cation channels. Ann New York Acad Sci 868:67–76CrossRef
go back to reference Wemmie JA, Chen J et al (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34(3):463–477PubMedCrossRef Wemmie JA, Chen J et al (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34(3):463–477PubMedCrossRef
go back to reference Wemmie JA, Askwith CC et al (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23(13):5496–5502PubMed Wemmie JA, Askwith CC et al (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23(13):5496–5502PubMed
go back to reference Wemmie JA, Coryell MW et al (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U A 101(10):3621–3626CrossRef Wemmie JA, Coryell MW et al (2004) Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc Natl Acad Sci U A 101(10):3621–3626CrossRef
go back to reference Wemmie JA, Price MP et al (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29(10):578–586PubMedCrossRef Wemmie JA, Price MP et al (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29(10):578–586PubMedCrossRef
go back to reference Wu LJ, Duan B et al (2004) Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 279(42):43716–43724PubMedCrossRef Wu LJ, Duan B et al (2004) Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol Chem 279(42):43716–43724PubMedCrossRef
go back to reference Xiong ZG, Zhu XM et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118(6):687–698PubMedCrossRef Xiong ZG, Zhu XM et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118(6):687–698PubMedCrossRef
go back to reference Yermolaieva O, Leonard AS et al (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA 101(17):6752–6757PubMedCentralPubMedCrossRef Yermolaieva O, Leonard AS et al (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci USA 101(17):6752–6757PubMedCentralPubMedCrossRef
go back to reference Zha XM, Wemmie JA et al (2006) Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci USA 103(44):16556–16561PubMedCentralPubMedCrossRef Zha XM, Wemmie JA et al (2006) Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc Natl Acad Sci USA 103(44):16556–16561PubMedCentralPubMedCrossRef
Metadata
Title
NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a
Authors
Su Gao
Yang Yu
Zhi-Yuan Ma
Hui Sun
Yong-Li Zhang
Xing-Tao Wang
Chaoyun Wang
Wei-Ming Fan
Qing-Yin Zheng
Chun-Lei Ma
Publication date
01-08-2015
Publisher
Springer US
Published in
Neurotoxicity Research / Issue 2/2015
Print ISSN: 1029-8428
Electronic ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-015-9530-3

Other articles of this Issue 2/2015

Neurotoxicity Research 2/2015 Go to the issue