Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Nitrate | Review

From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease

Authors: Hongyu Liu, Yisheng Huang, Mingshu Huang, Min Wang, Yue Ming, Weixing Chen, Yuanxin Chen, Zhengming Tang, Bo Jia

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional l-arginine–NO synthase (l-NOS) pathway, whereas endogenous NO production by l-arginine is inhibited under hypoxia–ischemia or disease conditions. In contrast, exogenous NO3/NO2/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3/NO2/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3/NO2/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Literature
1.
go back to reference Armet AM, Deehan EC, O’Sullivan AF, Mota JF, Field CJ, Prado CM, et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe. 2022;30(6):764–85.PubMed Armet AM, Deehan EC, O’Sullivan AF, Mota JF, Field CJ, Prado CM, et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe. 2022;30(6):764–85.PubMed
2.
go back to reference Attaye I, Warmbrunn MV, Boot ANAF, van der Wolk SC, Hutten BA, Daams JG, et al. A systematic review and meta-analysis of dietary interventions modulating gut microbiota and cardiometabolic diseases-striving for new standards in microbiome studies. Gastroenterology. 2022;162(7):1911–32.PubMed Attaye I, Warmbrunn MV, Boot ANAF, van der Wolk SC, Hutten BA, Daams JG, et al. A systematic review and meta-analysis of dietary interventions modulating gut microbiota and cardiometabolic diseases-striving for new standards in microbiome studies. Gastroenterology. 2022;162(7):1911–32.PubMed
3.
go back to reference Jukic Peladic N, Dell’Aquila G, Carrieri B, Maggio M, Cherubini A, Orlandoni P. Potential role of probiotics for inflammaging: a narrative review. Nutrients. 2021;13(9):2919.PubMedPubMedCentral Jukic Peladic N, Dell’Aquila G, Carrieri B, Maggio M, Cherubini A, Orlandoni P. Potential role of probiotics for inflammaging: a narrative review. Nutrients. 2021;13(9):2919.PubMedPubMedCentral
4.
go back to reference Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: an overview of systematic reviews. Obes Rev. 2022;23(4): e13409.PubMed Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: an overview of systematic reviews. Obes Rev. 2022;23(4): e13409.PubMed
5.
go back to reference Peng X, Cheng L, You Y, Tang C, Ren B, Li Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci. 2022;14(1):14.PubMedPubMedCentral Peng X, Cheng L, You Y, Tang C, Ren B, Li Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci. 2022;14(1):14.PubMedPubMedCentral
6.
go back to reference Vazquez-Torres A, Baumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol. 2016;29:1–8.PubMed Vazquez-Torres A, Baumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol. 2016;29:1–8.PubMed
7.
go back to reference Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185(16):2853–78.PubMed Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185(16):2853–78.PubMed
8.
go back to reference Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, et al. Infection-induced intestinal dysbiosis is mediated by macrophage activation and nitrate production. MBio. 2019;10(3):e00935-e1019.PubMedPubMedCentral Wang S, El-Fahmawi A, Christian DA, Fang Q, Radaelli E, Chen L, et al. Infection-induced intestinal dysbiosis is mediated by macrophage activation and nitrate production. MBio. 2019;10(3):e00935-e1019.PubMedPubMedCentral
9.
go back to reference Lim Y, Tang KD, Karpe AV, Beale DJ, Totsika M, Kenny L, et al. Chemoradiation therapy changes oral microbiome and metabolomic profiles in patients with oral cavity cancer and oropharyngeal cancer. Head Neck. 2021;43(5):1521–34.PubMed Lim Y, Tang KD, Karpe AV, Beale DJ, Totsika M, Kenny L, et al. Chemoradiation therapy changes oral microbiome and metabolomic profiles in patients with oral cavity cancer and oropharyngeal cancer. Head Neck. 2021;43(5):1521–34.PubMed
10.
go back to reference Nasseri-Moghaddam S, Nokhbeh-Zaeem H, Saniee P, Pedramnia S, Sotoudeh M, Malekzadeh R. Oral nitrate reductase activity and erosive gastro-esophageal reflux disease: a nitrate hypothesis for GERD pathogenesis. Dig Dis Sci. 2012;57(2):413–8.PubMed Nasseri-Moghaddam S, Nokhbeh-Zaeem H, Saniee P, Pedramnia S, Sotoudeh M, Malekzadeh R. Oral nitrate reductase activity and erosive gastro-esophageal reflux disease: a nitrate hypothesis for GERD pathogenesis. Dig Dis Sci. 2012;57(2):413–8.PubMed
11.
go back to reference Li Z, Dou L, Zhang Y, He S, Zhao D, Hao C, et al. Characterization of the oral and esophageal microbiota in esophageal precancerous lesions and squamous cell carcinoma. Front Cell Infect Microbiol. 2021;11: 714162.PubMedPubMedCentral Li Z, Dou L, Zhang Y, He S, Zhao D, Hao C, et al. Characterization of the oral and esophageal microbiota in esophageal precancerous lesions and squamous cell carcinoma. Front Cell Infect Microbiol. 2021;11: 714162.PubMedPubMedCentral
12.
go back to reference Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, et al. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr. 2018;107(4):504–22.PubMed Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, et al. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr. 2018;107(4):504–22.PubMed
13.
go back to reference Vanhatalo A, L’Heureux JE, Kelly J, Blackwell JR, Wylie LJ, Fulford J, et al. Network analysis of nitrate-sensitive oral microbiome reveals interactions with cognitive function and cardiovascular health across dietary interventions. Redox Biol. 2021;41: 101933.PubMedPubMedCentral Vanhatalo A, L’Heureux JE, Kelly J, Blackwell JR, Wylie LJ, Fulford J, et al. Network analysis of nitrate-sensitive oral microbiome reveals interactions with cognitive function and cardiovascular health across dietary interventions. Redox Biol. 2021;41: 101933.PubMedPubMedCentral
14.
go back to reference Vanhatalo A, Blackwell JR, L’Heureux JE, Williams DW, Smith A, van der Giezen M, et al. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radical Biol Med. 2018;124:21–30. Vanhatalo A, Blackwell JR, L’Heureux JE, Williams DW, Smith A, van der Giezen M, et al. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radical Biol Med. 2018;124:21–30.
15.
go back to reference Cordero-Herrera I, Kozyra M, Zhuge Z, McCann Haworth S, Moretti C, Peleli M, et al. AMP-activated protein kinase activation and NADPH oxidase inhibition by inorganic nitrate and nitrite prevent liver steatosis. Proc Natl Acad Sci USA. 2019;116(1):217–26.PubMed Cordero-Herrera I, Kozyra M, Zhuge Z, McCann Haworth S, Moretti C, Peleli M, et al. AMP-activated protein kinase activation and NADPH oxidase inhibition by inorganic nitrate and nitrite prevent liver steatosis. Proc Natl Acad Sci USA. 2019;116(1):217–26.PubMed
16.
go back to reference Sonoda K, Kono Y, Kitamori K, Ohtake K, Shiba S, Kasono K, et al. Beneficial effects of dietary nitrite on a model of nonalcoholic steatohepatitis induced by high-fat/high-cholesterol diets in SHRSP5/Dmcr rats: a preliminary study. Int J Mol Sci. 2022;23(6):2931.PubMedPubMedCentral Sonoda K, Kono Y, Kitamori K, Ohtake K, Shiba S, Kasono K, et al. Beneficial effects of dietary nitrite on a model of nonalcoholic steatohepatitis induced by high-fat/high-cholesterol diets in SHRSP5/Dmcr rats: a preliminary study. Int J Mol Sci. 2022;23(6):2931.PubMedPubMedCentral
17.
go back to reference Ikonomidis I, Pavlidis G, Tsoumani M, Kousathana F, Katogiannis K, Tsilivarakis D, et al. Endothelial dysfunction is associated with decreased nitric oxide bioavailability in dysglycaemic subjects and first-degree relatives of type 2 diabetic patients. J Clin Med. 2022;11(12):3299.PubMedPubMedCentral Ikonomidis I, Pavlidis G, Tsoumani M, Kousathana F, Katogiannis K, Tsilivarakis D, et al. Endothelial dysfunction is associated with decreased nitric oxide bioavailability in dysglycaemic subjects and first-degree relatives of type 2 diabetic patients. J Clin Med. 2022;11(12):3299.PubMedPubMedCentral
18.
go back to reference Guimarães DD, Cruz JC, Carvalho-Galvão A, Zhuge Z, Marques SM, Naves LM, et al. Dietary nitrate reduces blood pressure in rats with angiotensin II-induced hypertension via mechanisms that involve reduction of sympathetic hyperactivity. Hypertension (Dallas, Tex: 1979). 2019;73(4):839–48.PubMed Guimarães DD, Cruz JC, Carvalho-Galvão A, Zhuge Z, Marques SM, Naves LM, et al. Dietary nitrate reduces blood pressure in rats with angiotensin II-induced hypertension via mechanisms that involve reduction of sympathetic hyperactivity. Hypertension (Dallas, Tex: 1979). 2019;73(4):839–48.PubMed
19.
go back to reference Sharma NM, Haibara AS, Katsurada K, Liu X, Patel KP. Central angiotensin II-protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension. Nitric Oxide Biol Chem. 2020;94:54–62. Sharma NM, Haibara AS, Katsurada K, Liu X, Patel KP. Central angiotensin II-protein inhibitor of neuronal nitric oxide synthase (PIN) axis contribute to neurogenic hypertension. Nitric Oxide Biol Chem. 2020;94:54–62.
20.
go back to reference Kakavandi NR, Hasanvand A, Ghazi-Khansari M, Sezavar AH, Nabizadeh H, Parohan M. Maternal dietary nitrate intake and risk of neural tube defects: a systematic review and dose-response meta-analysis. Food Chem Toxicol. 2018;118:287–93.PubMed Kakavandi NR, Hasanvand A, Ghazi-Khansari M, Sezavar AH, Nabizadeh H, Parohan M. Maternal dietary nitrate intake and risk of neural tube defects: a systematic review and dose-response meta-analysis. Food Chem Toxicol. 2018;118:287–93.PubMed
21.
go back to reference Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, Patel RP, Joshipura KJ. Pathways linking oral bacteria, nitric oxide metabolism, and health. J Dent Res. 2022;101(6):623–31.PubMedPubMedCentral Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, Patel RP, Joshipura KJ. Pathways linking oral bacteria, nitric oxide metabolism, and health. J Dent Res. 2022;101(6):623–31.PubMedPubMedCentral
22.
go back to reference Sun T, Yu H, Fu J. Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants. Front Pediatr. 2021;9: 762545.PubMedPubMedCentral Sun T, Yu H, Fu J. Respiratory tract microecology and bronchopulmonary dysplasia in preterm infants. Front Pediatr. 2021;9: 762545.PubMedPubMedCentral
23.
go back to reference Soodaeva S, Klimanov I, Kubysheva N, Popova N, Batyrshin I. The state of the nitric oxide cycle in respiratory tract diseases. Oxid Med Cell Longev. 2020;2020:4859260.PubMedPubMedCentral Soodaeva S, Klimanov I, Kubysheva N, Popova N, Batyrshin I. The state of the nitric oxide cycle in respiratory tract diseases. Oxid Med Cell Longev. 2020;2020:4859260.PubMedPubMedCentral
24.
go back to reference Briskey D, Tucker PS, Johnson DW, Coombes JS. Microbiota and the nitrogen cycle: implications in the development and progression of CVD and CKD. Nitric Oxide. 2016;57:64–70.PubMed Briskey D, Tucker PS, Johnson DW, Coombes JS. Microbiota and the nitrogen cycle: implications in the development and progression of CVD and CKD. Nitric Oxide. 2016;57:64–70.PubMed
25.
go back to reference Carlstrom M, Montenegro MF. Oxidative stress and compromised nitric oxide signaling in cardiorenal disease therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway. J Intern Med. 2019;285(1):2–18.PubMed Carlstrom M, Montenegro MF. Oxidative stress and compromised nitric oxide signaling in cardiorenal disease therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway. J Intern Med. 2019;285(1):2–18.PubMed
26.
go back to reference Cosola C, Sabatino A, di Bari I, Fiaccadori E, Gesualdo L. Nutrients, nutraceuticals, and xenobiotics affecting renal health. Nutrients. 2018;10(7):808.PubMedPubMedCentral Cosola C, Sabatino A, di Bari I, Fiaccadori E, Gesualdo L. Nutrients, nutraceuticals, and xenobiotics affecting renal health. Nutrients. 2018;10(7):808.PubMedPubMedCentral
27.
go back to reference Kobayashi J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: a review. Nitric Oxide. 2018;73:66–73.PubMed Kobayashi J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: a review. Nitric Oxide. 2018;73:66–73.PubMed
28.
go back to reference Ma L, Hu L, Jin L, Wang J, Li X, Wang W, et al. Rebalancing glucolipid metabolism and gut microbiome dysbiosis by nitrate-dependent alleviation of high-fat diet-induced obesity. BMJ Open Diabetes Res Care. 2020;8(1): e001255.PubMedPubMedCentral Ma L, Hu L, Jin L, Wang J, Li X, Wang W, et al. Rebalancing glucolipid metabolism and gut microbiome dysbiosis by nitrate-dependent alleviation of high-fat diet-induced obesity. BMJ Open Diabetes Res Care. 2020;8(1): e001255.PubMedPubMedCentral
29.
go back to reference Rocha BS, Laranjinha J. Nitrate from diet might fuel gut microbiota metabolism: minding the gap between redox signaling and inter-kingdom communication. Free Radic Biol Med. 2020;149:37–43.PubMed Rocha BS, Laranjinha J. Nitrate from diet might fuel gut microbiota metabolism: minding the gap between redox signaling and inter-kingdom communication. Free Radic Biol Med. 2020;149:37–43.PubMed
30.
go back to reference Tiso M, Schechter AN. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS ONE. 2015;10(3): e0119712.PubMedPubMedCentral Tiso M, Schechter AN. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS ONE. 2015;10(3): e0119712.PubMedPubMedCentral
31.
go back to reference Qu XM, Wu ZF, Pang BX, Jin LY, Qin LZ, Wang SL. From nitrate to nitric oxide: the role of salivary glands and oral bacteria. J Dent Res. 2016;95(13):1452–6.PubMed Qu XM, Wu ZF, Pang BX, Jin LY, Qin LZ, Wang SL. From nitrate to nitric oxide: the role of salivary glands and oral bacteria. J Dent Res. 2016;95(13):1452–6.PubMed
32.
go back to reference Shannon OM, Gregory S, Siervo M. Dietary nitrate, aging and brain health: the latest evidence. Curr Opin Clin Nutr Metab Care. 2022;25:393–400.PubMed Shannon OM, Gregory S, Siervo M. Dietary nitrate, aging and brain health: the latest evidence. Curr Opin Clin Nutr Metab Care. 2022;25:393–400.PubMed
33.
go back to reference Babateen AM, Shannon OM, O’Brien GM, Okello E, Smith E, Olgacer D, et al. Incremental doses of nitrate-rich beetroot juice do not modify cognitive function and cerebral blood flow in overweight and obese older adults: a 13-week pilot randomised clinical trial. Nutrients. 2022;14(5):1052.PubMedPubMedCentral Babateen AM, Shannon OM, O’Brien GM, Okello E, Smith E, Olgacer D, et al. Incremental doses of nitrate-rich beetroot juice do not modify cognitive function and cerebral blood flow in overweight and obese older adults: a 13-week pilot randomised clinical trial. Nutrients. 2022;14(5):1052.PubMedPubMedCentral
34.
go back to reference Piknova B, Schechter AN, Park JW, Vanhatalo A, Jones AM. Skeletal muscle nitrate as a regulator of systemic nitric oxide homeostasis. Exerc Sport Sci Rev. 2022;50(1):2.PubMed Piknova B, Schechter AN, Park JW, Vanhatalo A, Jones AM. Skeletal muscle nitrate as a regulator of systemic nitric oxide homeostasis. Exerc Sport Sci Rev. 2022;50(1):2.PubMed
35.
go back to reference Brunetta HS, Petrick HL, Momken I, Handy RM, Pignanelli C, Nunes EA, et al. Nitrate consumption preserves HFD-induced skeletal muscle mitochondrial ADP sensitivity and lysine acetylation: a potential role for SIRT1. Redox Biol. 2022;52: 102307.PubMedPubMedCentral Brunetta HS, Petrick HL, Momken I, Handy RM, Pignanelli C, Nunes EA, et al. Nitrate consumption preserves HFD-induced skeletal muscle mitochondrial ADP sensitivity and lysine acetylation: a potential role for SIRT1. Redox Biol. 2022;52: 102307.PubMedPubMedCentral
36.
go back to reference Ashworth A, Cutler C, Farnham G, Liddle L, Burleigh M, Rodiles A, et al. Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome. Free Radic Biol Med. 2019;138:63–72.PubMed Ashworth A, Cutler C, Farnham G, Liddle L, Burleigh M, Rodiles A, et al. Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome. Free Radic Biol Med. 2019;138:63–72.PubMed
37.
go back to reference Alzahrani HS, Jackson KG, Hobbs DA, Lovegrove JA. The role of dietary nitrate and the oral microbiome on blood pressure and vascular tone. Nutr Res Rev. 2021;34(2):222–39.PubMed Alzahrani HS, Jackson KG, Hobbs DA, Lovegrove JA. The role of dietary nitrate and the oral microbiome on blood pressure and vascular tone. Nutr Res Rev. 2021;34(2):222–39.PubMed
38.
go back to reference Rosier BT, Takahashi N, Zaura E, Krom BP, MartÍnez-Espinosa RM, van Breda SGJ, et al. The importance of nitrate reduction for oral health. J Dent Res. 2022;101(8):887–97.PubMed Rosier BT, Takahashi N, Zaura E, Krom BP, MartÍnez-Espinosa RM, van Breda SGJ, et al. The importance of nitrate reduction for oral health. J Dent Res. 2022;101(8):887–97.PubMed
39.
go back to reference Lundberg JO, Carlström M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 2018;28(1):9–22.PubMed Lundberg JO, Carlström M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 2018;28(1):9–22.PubMed
40.
go back to reference González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of oral and gut microbiota in dietary nitrate metabolism and its impact on sports performance. Nutrients. 2020;12(12):3611.PubMedPubMedCentral González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of oral and gut microbiota in dietary nitrate metabolism and its impact on sports performance. Nutrients. 2020;12(12):3611.PubMedPubMedCentral
41.
go back to reference Pignatelli P, Fabietti G, Ricci A, Piattelli A, Curia MC. How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. Int J Mol Sci. 2020;21(20):7538.PubMedPubMedCentral Pignatelli P, Fabietti G, Ricci A, Piattelli A, Curia MC. How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. Int J Mol Sci. 2020;21(20):7538.PubMedPubMedCentral
42.
go back to reference Said Abasse K, Essien EE, Abbas M, Yu X, Xie W, Sun J, et al. Association between dietary nitrate, nitrite intake, and site-specific cancer risk: a systematic review and meta-analysis. Nutrients. 2022;14(3):666.PubMedPubMedCentral Said Abasse K, Essien EE, Abbas M, Yu X, Xie W, Sun J, et al. Association between dietary nitrate, nitrite intake, and site-specific cancer risk: a systematic review and meta-analysis. Nutrients. 2022;14(3):666.PubMedPubMedCentral
43.
go back to reference Moazeni M, Heidari Z, Golipour S, Ghaisari L, Sillanpää M, Ebrahimi A. Dietary intake and health risk assessment of nitrate, nitrite, and nitrosamines: a Bayesian analysis and Monte Carlo simulation. Environ Sci Pollut Res Int. 2020;27(36):45568–80.PubMed Moazeni M, Heidari Z, Golipour S, Ghaisari L, Sillanpää M, Ebrahimi A. Dietary intake and health risk assessment of nitrate, nitrite, and nitrosamines: a Bayesian analysis and Monte Carlo simulation. Environ Sci Pollut Res Int. 2020;27(36):45568–80.PubMed
44.
go back to reference Tannenbaum SR, Correa P. Nitrate and gastric cancer risks. Nature. 1985;317(6039):675–6.PubMed Tannenbaum SR, Correa P. Nitrate and gastric cancer risks. Nature. 1985;317(6039):675–6.PubMed
45.
go back to reference Tricker AR, Preussmann R. Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res. 1991;259(3–4):277–89.PubMed Tricker AR, Preussmann R. Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res. 1991;259(3–4):277–89.PubMed
46.
go back to reference Tricker AR, Pfundstein B, Theobald E, Preussmann R, Spiegelhalder B. Mean daily intake of volatile N-nitrosamines from foods and beverages in West Germany in 1989–1990. Food Chem Toxicol. 1991;29(11):729–32.PubMed Tricker AR, Pfundstein B, Theobald E, Preussmann R, Spiegelhalder B. Mean daily intake of volatile N-nitrosamines from foods and beverages in West Germany in 1989–1990. Food Chem Toxicol. 1991;29(11):729–32.PubMed
47.
go back to reference Alexander J, Benford DJ, Cockburn A, Cravedi J-P, Dogliotti E, Domenico Ad, et al., editors. Nitrate in vegetables scientific opinion of the panel on contaminants in the food chain 12008. Alexander J, Benford DJ, Cockburn A, Cravedi J-P, Dogliotti E, Domenico Ad, et al., editors. Nitrate in vegetables scientific opinion of the panel on contaminants in the food chain 12008.
48.
go back to reference Ohara M, Suyama T. Nitrate reductase activity during the embryonal development of the frog. Nature. 1952;169(4294):285–6.PubMed Ohara M, Suyama T. Nitrate reductase activity during the embryonal development of the frog. Nature. 1952;169(4294):285–6.PubMed
49.
go back to reference Akiyama K, Kimura A, Suzuki H, Takeyama Y, Gluckman TL, Terhakopian A, et al. Production of oxidative products of nitric oxide in infarcted human heart. J Am Coll Cardiol. 1998;32(2):373–9.PubMed Akiyama K, Kimura A, Suzuki H, Takeyama Y, Gluckman TL, Terhakopian A, et al. Production of oxidative products of nitric oxide in infarcted human heart. J Am Coll Cardiol. 1998;32(2):373–9.PubMed
50.
go back to reference Burleigh MC, Liddle L, Monaghan C, Muggeridge DJ, Sculthorpe N, Butcher JP, et al. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol Med. 2018;120:80–8.PubMed Burleigh MC, Liddle L, Monaghan C, Muggeridge DJ, Sculthorpe N, Butcher JP, et al. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol Med. 2018;120:80–8.PubMed
51.
go back to reference Daims H, Lucker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24(9):699–712.PubMedPubMedCentral Daims H, Lucker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016;24(9):699–712.PubMedPubMedCentral
52.
go back to reference Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995;1(6):546–51.PubMed Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med. 1995;1(6):546–51.PubMed
53.
go back to reference Blot S. Antiseptic mouthwash, the nitrate-nitrite-nitric oxide pathway, and hospital mortality: a hypothesis generating review. Intensive Care Med. 2021;47(1):28–38.PubMed Blot S. Antiseptic mouthwash, the nitrate-nitrite-nitric oxide pathway, and hospital mortality: a hypothesis generating review. Intensive Care Med. 2021;47(1):28–38.PubMed
54.
go back to reference Flores M, Toldra F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products—invited review. Meat Sci. 2021;171: 108272.PubMed Flores M, Toldra F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products—invited review. Meat Sci. 2021;171: 108272.PubMed
55.
go back to reference Shannon OM, Allen JD, Bescos R, Burke L, Clifford T, Easton C, et al. Dietary inorganic nitrate as an ergogenic aid: an expert consensus derived via the modified Delphi technique. Sports Med (Auckland, NZ). 2022;52:2537–58. Shannon OM, Allen JD, Bescos R, Burke L, Clifford T, Easton C, et al. Dietary inorganic nitrate as an ergogenic aid: an expert consensus derived via the modified Delphi technique. Sports Med (Auckland, NZ). 2022;52:2537–58.
56.
go back to reference Kondo H, Akoumianakis I, Badi I, Akawi N, Kotanidis CP, Polkinghorne M, et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur Heart J. 2021;42(48):4947–60.PubMedPubMedCentral Kondo H, Akoumianakis I, Badi I, Akawi N, Kotanidis CP, Polkinghorne M, et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur Heart J. 2021;42(48):4947–60.PubMedPubMedCentral
57.
go back to reference Qin C, Bian X-L, Wu H-Y, Xian J-Y, Lin Y-H, Cai C-Y, et al. Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand. Mol Psychiatry. 2021;26(11):6506–19.PubMed Qin C, Bian X-L, Wu H-Y, Xian J-Y, Lin Y-H, Cai C-Y, et al. Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand. Mol Psychiatry. 2021;26(11):6506–19.PubMed
58.
go back to reference Wong NF, Xu-Friedman MA. Induction of activity-dependent plasticity at auditory nerve synapses. J Neurosci. 2022;42(32):6211–20.PubMedPubMedCentral Wong NF, Xu-Friedman MA. Induction of activity-dependent plasticity at auditory nerve synapses. J Neurosci. 2022;42(32):6211–20.PubMedPubMedCentral
61.
go back to reference Tran DL, Le Thi P, Lee SM, Hoang Thi TT, Park KD. Multifunctional surfaces through synergistic effects of heparin and nitric oxide release for a highly efficient treatment of blood-contacting devices. J Control Release. 2021;329:401–12.PubMed Tran DL, Le Thi P, Lee SM, Hoang Thi TT, Park KD. Multifunctional surfaces through synergistic effects of heparin and nitric oxide release for a highly efficient treatment of blood-contacting devices. J Control Release. 2021;329:401–12.PubMed
62.
go back to reference Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: a novel theory of vascular NO signaling. Redox Biol. 2022;53: 102327.PubMedPubMedCentral Liu T, Schroeder H, Power GG, Blood AB. A physiologically relevant role for NO stored in vascular smooth muscle cells: a novel theory of vascular NO signaling. Redox Biol. 2022;53: 102327.PubMedPubMedCentral
63.
go back to reference Durgin BG, Wood KC, Hahn SA, McMahon B, Baust JJ, Straub AC. Smooth muscle cell CYB5R3 preserves cardiac and vascular function under chronic hypoxic stress. J Mol Cell Cardiol. 2022;162:72–80.PubMed Durgin BG, Wood KC, Hahn SA, McMahon B, Baust JJ, Straub AC. Smooth muscle cell CYB5R3 preserves cardiac and vascular function under chronic hypoxic stress. J Mol Cell Cardiol. 2022;162:72–80.PubMed
64.
go back to reference Jones T, Dunn EL, Macdonald JH, Kubis H-P, McMahon N, Sandoo A. The effects of beetroot juice on blood pressure, microvascular function and large-vessel endothelial function: a randomized, double-blind, placebo-controlled pilot study in healthy older adults. Nutrients. 2019;11(8):1792.PubMedPubMedCentral Jones T, Dunn EL, Macdonald JH, Kubis H-P, McMahon N, Sandoo A. The effects of beetroot juice on blood pressure, microvascular function and large-vessel endothelial function: a randomized, double-blind, placebo-controlled pilot study in healthy older adults. Nutrients. 2019;11(8):1792.PubMedPubMedCentral
65.
go back to reference Benjamim CJR, Porto AA, Valenti VE, Sobrinho ACDS, Garner DM, Gualano B, et al. Nitrate derived from beetroot juice lowers blood pressure in patients with arterial hypertension: a systematic review and meta-analysis. Front Nutr. 2022;9: 823039.PubMedPubMedCentral Benjamim CJR, Porto AA, Valenti VE, Sobrinho ACDS, Garner DM, Gualano B, et al. Nitrate derived from beetroot juice lowers blood pressure in patients with arterial hypertension: a systematic review and meta-analysis. Front Nutr. 2022;9: 823039.PubMedPubMedCentral
66.
go back to reference Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, et al. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr. 2021;61(5):788–804.PubMed Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, et al. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr. 2021;61(5):788–804.PubMed
67.
go back to reference Craig JC, Broxterman RM, Smith JR, Allen JD, Barstow TJ. Effect of dietary nitrate supplementation on conduit artery blood flow, muscle oxygenation, and metabolic rate during handgrip exercise. J Appl Physiol (1985). 2018;125(2):254–62.PubMed Craig JC, Broxterman RM, Smith JR, Allen JD, Barstow TJ. Effect of dietary nitrate supplementation on conduit artery blood flow, muscle oxygenation, and metabolic rate during handgrip exercise. J Appl Physiol (1985). 2018;125(2):254–62.PubMed
68.
go back to reference Brookes ZLS, Belfield LA, Ashworth A, Casas-Agustench P, Raja M, Pollard AJ, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021;113: 103768.PubMed Brookes ZLS, Belfield LA, Ashworth A, Casas-Agustench P, Raja M, Pollard AJ, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021;113: 103768.PubMed
69.
go back to reference Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolation and characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health. Front Microbiol. 2020;11: 555465.PubMedPubMedCentral Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolation and characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health. Front Microbiol. 2020;11: 555465.PubMedPubMedCentral
70.
go back to reference Walker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide Biol Chem. 2018;73:81–8. Walker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide Biol Chem. 2018;73:81–8.
71.
go back to reference Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.PubMedPubMedCentral Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.PubMedPubMedCentral
72.
go back to reference Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–66.PubMed Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–66.PubMed
73.
go back to reference Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276–86.PubMed Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276–86.PubMed
74.
go back to reference Li H, Duncan C, Townend J, Killham K, Smith LM, Johnston P, et al. Nitrate-reducing bacteria on rat tongues. Appl Environ Microbiol. 1997;63(3):924–30.PubMedPubMedCentral Li H, Duncan C, Townend J, Killham K, Smith LM, Johnston P, et al. Nitrate-reducing bacteria on rat tongues. Appl Environ Microbiol. 1997;63(3):924–30.PubMedPubMedCentral
75.
go back to reference Liddle L, Burleigh MC, Monaghan C, Muggeridge DJ, Sculthorpe N, Pedlar CR, et al. Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference. Nitric Oxide Biol Chem. 2019;83:1–10. Liddle L, Burleigh MC, Monaghan C, Muggeridge DJ, Sculthorpe N, Pedlar CR, et al. Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference. Nitric Oxide Biol Chem. 2019;83:1–10.
76.
go back to reference Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T, et al. Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radical Biol Med. 2014;77:249–57. Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T, et al. Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radical Biol Med. 2014;77:249–57.
77.
go back to reference Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS ONE. 2014;9(3): e88645.PubMedPubMedCentral Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS ONE. 2014;9(3): e88645.PubMedPubMedCentral
78.
go back to reference Goh CE, Trinh P, Colombo PC, Genkinger JM, Mathema B, Uhlemann A-C, et al. Association between nitrate-reducing oral bacteria and cardiometabolic outcomes: results from ORIGINS. J Am Heart Assoc. 2019;8(23): e013324.PubMedPubMedCentral Goh CE, Trinh P, Colombo PC, Genkinger JM, Mathema B, Uhlemann A-C, et al. Association between nitrate-reducing oral bacteria and cardiometabolic outcomes: results from ORIGINS. J Am Heart Assoc. 2019;8(23): e013324.PubMedPubMedCentral
79.
go back to reference Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary nitrate and nitric oxide metabolism: mouth, circulation, skeletal muscle, and exercise performance. Med Sci Sports Exerc. 2021;53(2):280–94.PubMed Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary nitrate and nitric oxide metabolism: mouth, circulation, skeletal muscle, and exercise performance. Med Sci Sports Exerc. 2021;53(2):280–94.PubMed
80.
go back to reference Hansen TH, Kern T, Bak EG, Kashani A, Allin KH, Nielsen T, et al. Impact of a vegan diet on the human salivary microbiota. Sci Rep. 2018;8(1):5847.PubMedPubMedCentral Hansen TH, Kern T, Bak EG, Kashani A, Allin KH, Nielsen T, et al. Impact of a vegan diet on the human salivary microbiota. Sci Rep. 2018;8(1):5847.PubMedPubMedCentral
81.
go back to reference Ahmed KA, Kim K, Ricart K, Van Der Pol W, Qi X, Bamman MM, et al. Potential role for age as a modulator of oral nitrate reductase activity. Nitric Oxide Biol Chem. 2021;108:1–7. Ahmed KA, Kim K, Ricart K, Van Der Pol W, Qi X, Bamman MM, et al. Potential role for age as a modulator of oral nitrate reductase activity. Nitric Oxide Biol Chem. 2021;108:1–7.
82.
go back to reference Tribble GD, Angelov N, Weltman R, Wang B-Y, Eswaran SV, Gay IC, et al. Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front Cell Infect Microbiol. 2019;9:39.PubMedPubMedCentral Tribble GD, Angelov N, Weltman R, Wang B-Y, Eswaran SV, Gay IC, et al. Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front Cell Infect Microbiol. 2019;9:39.PubMedPubMedCentral
83.
go back to reference Senkus KE, Crowe-White KM. Influence of mouth rinse use on the enterosalivary pathway and blood pressure regulation: a systematic review. Crit Rev Food Sci Nutr. 2020;60(17):2874–86.PubMed Senkus KE, Crowe-White KM. Influence of mouth rinse use on the enterosalivary pathway and blood pressure regulation: a systematic review. Crit Rev Food Sci Nutr. 2020;60(17):2874–86.PubMed
84.
go back to reference Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis. 2007;45(1):29–38.PubMed Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis. 2007;45(1):29–38.PubMed
85.
go back to reference Pajecki D, Zilberstein B, Cecconello I, Dos Santos MAA, Yagi OK, Gama-Rodrigues JJ. Larger amounts of nitrite and nitrate-reducing bacteria in megaesophagus of Chagas’ disease than in controls. J Gastrointest Surg. 2007;11(2):199–203.PubMed Pajecki D, Zilberstein B, Cecconello I, Dos Santos MAA, Yagi OK, Gama-Rodrigues JJ. Larger amounts of nitrite and nitrate-reducing bacteria in megaesophagus of Chagas’ disease than in controls. J Gastrointest Surg. 2007;11(2):199–203.PubMed
86.
go back to reference Park CH, Lee JG, Lee AR, Eun CS, Han DS. Network construction of gastric microbiome and organization of microbial modules associated with gastric carcinogenesis. Sci Rep. 2019;9(1):12444.PubMedPubMedCentral Park CH, Lee JG, Lee AR, Eun CS, Han DS. Network construction of gastric microbiome and organization of microbial modules associated with gastric carcinogenesis. Sci Rep. 2019;9(1):12444.PubMedPubMedCentral
87.
go back to reference Sanduleanu S, Jonkers D, De Bruïne A, Hameeteman W, Stockbrügger RW. Double gastric infection with Helicobacter pylori and non-Helicobacter pylori bacteria during acid-suppressive therapy: increase of pro-inflammatory cytokines and development of atrophic gastritis. Aliment Pharmacol Ther. 2001;15(8):1163–75.PubMed Sanduleanu S, Jonkers D, De Bruïne A, Hameeteman W, Stockbrügger RW. Double gastric infection with Helicobacter pylori and non-Helicobacter pylori bacteria during acid-suppressive therapy: increase of pro-inflammatory cytokines and development of atrophic gastritis. Aliment Pharmacol Ther. 2001;15(8):1163–75.PubMed
88.
go back to reference Mowat C, Williams C, Gillen D, Hossack M, Gilmour D, Carswell A, et al. Omeprazole, Helicobacter pylori status, and alterations in the intragastric milieu facilitating bacterial N-nitrosation. Gastroenterology. 2000;119(2):339–47.PubMed Mowat C, Williams C, Gillen D, Hossack M, Gilmour D, Carswell A, et al. Omeprazole, Helicobacter pylori status, and alterations in the intragastric milieu facilitating bacterial N-nitrosation. Gastroenterology. 2000;119(2):339–47.PubMed
89.
go back to reference Jo HJ, Kim J, Kim N, Park JH, Nam RH, Seok Y-J, et al. Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. Helicobacter. 2016;21(5):364–74.PubMed Jo HJ, Kim J, Kim N, Park JH, Nam RH, Seok Y-J, et al. Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. Helicobacter. 2016;21(5):364–74.PubMed
90.
go back to reference Conley MN, Roberts C, Sharpton TJ, Iwaniec UT, Hord NG. Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats. Mol Nutr Food Res. 2017;61(5):1600372.PubMedPubMedCentral Conley MN, Roberts C, Sharpton TJ, Iwaniec UT, Hord NG. Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats. Mol Nutr Food Res. 2017;61(5):1600372.PubMedPubMedCentral
91.
go back to reference Rocha BS, Correia MG, Pereira A, Henriques I, Da Silva GJ, Laranjinha J. Inorganic nitrate prevents the loss of tight junction proteins and modulates inflammatory events induced by broad-spectrum antibiotics: a role for intestinal microbiota? Nitric Oxide Biol Chem. 2019;88:27–34. Rocha BS, Correia MG, Pereira A, Henriques I, Da Silva GJ, Laranjinha J. Inorganic nitrate prevents the loss of tight junction proteins and modulates inflammatory events induced by broad-spectrum antibiotics: a role for intestinal microbiota? Nitric Oxide Biol Chem. 2019;88:27–34.
92.
go back to reference Petersson J, Jädert C, Phillipson M, Borniquel S, Lundberg JO, Holm L. Physiological recycling of endogenous nitrate by oral bacteria regulates gastric mucus thickness. Free Radical Biol Med. 2015;89:241–7. Petersson J, Jädert C, Phillipson M, Borniquel S, Lundberg JO, Holm L. Physiological recycling of endogenous nitrate by oral bacteria regulates gastric mucus thickness. Free Radical Biol Med. 2015;89:241–7.
93.
go back to reference Petersson J, Phillipson M, Jansson EA, Patzak A, Lundberg JO, Holm L. Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G718–24.PubMed Petersson J, Phillipson M, Jansson EA, Patzak A, Lundberg JO, Holm L. Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G718–24.PubMed
94.
go back to reference Mohamed NI, Suddek GM, El-Kashef DH. Molsidomine alleviates acetic acid-induced colitis in rats by reducing oxidative stress, inflammation and apoptosis. Int Immunopharmacol. 2021;99: 108005.PubMed Mohamed NI, Suddek GM, El-Kashef DH. Molsidomine alleviates acetic acid-induced colitis in rats by reducing oxidative stress, inflammation and apoptosis. Int Immunopharmacol. 2021;99: 108005.PubMed
95.
go back to reference Florin TH, Neale G, Cummings JH. The effect of dietary nitrate on nitrate and nitrite excretion in man. Br J Nutr. 1990;64(2):387–97.PubMed Florin TH, Neale G, Cummings JH. The effect of dietary nitrate on nitrate and nitrite excretion in man. Br J Nutr. 1990;64(2):387–97.PubMed
96.
go back to reference Dellavalle CT, Xiao Q, Yang G, Shu X-O, Aschebrook-Kilfoy B, Zheng W, et al. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study. Int J Cancer. 2014;134(12):2917–26.PubMed Dellavalle CT, Xiao Q, Yang G, Shu X-O, Aschebrook-Kilfoy B, Zheng W, et al. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study. Int J Cancer. 2014;134(12):2917–26.PubMed
97.
go back to reference Bradbury KE, Appleby PN, Key TJ. Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2014;100(Suppl 1):394S-S398.PubMed Bradbury KE, Appleby PN, Key TJ. Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2014;100(Suppl 1):394S-S398.PubMed
98.
go back to reference Machha A, Schechter AN. Inorganic nitrate: a major player in the cardiovascular health benefits of vegetables? Nutr Rev. 2012;70(6):367–72.PubMed Machha A, Schechter AN. Inorganic nitrate: a major player in the cardiovascular health benefits of vegetables? Nutr Rev. 2012;70(6):367–72.PubMed
99.
go back to reference Gangolli SD, van den Brandt PA, Feron VJ, Janzowsky C, Koeman JH, Speijers GJ, et al. Nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol. 1994;292(1):1–38.PubMed Gangolli SD, van den Brandt PA, Feron VJ, Janzowsky C, Koeman JH, Speijers GJ, et al. Nitrate, nitrite and N-nitroso compounds. Eur J Pharmacol. 1994;292(1):1–38.PubMed
100.
go back to reference Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.PubMed Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10.PubMed
101.
go back to reference van Velzen AG, Sips AJAM, Schothorst RC, Lambers AC, Meulenbelt J. The oral bioavailability of nitrate from nitrate-rich vegetables in humans. Toxicol Lett. 2008;181(3):177–81.PubMed van Velzen AG, Sips AJAM, Schothorst RC, Lambers AC, Meulenbelt J. The oral bioavailability of nitrate from nitrate-rich vegetables in humans. Toxicol Lett. 2008;181(3):177–81.PubMed
102.
go back to reference Vasco E, Dias MG, Oliveira L. The first harmonised total diet study in Portugal: nitrate occurrence and exposure assessment. Food Chem. 2022;392: 133152.PubMed Vasco E, Dias MG, Oliveira L. The first harmonised total diet study in Portugal: nitrate occurrence and exposure assessment. Food Chem. 2022;392: 133152.PubMed
104.
go back to reference Karwowska M, Kononiuk A. Nitrates/nitrites in food-risk for nitrosative stress and benefits. Antioxidants (Basel). 2020;9(3):241.PubMed Karwowska M, Kononiuk A. Nitrates/nitrites in food-risk for nitrosative stress and benefits. Antioxidants (Basel). 2020;9(3):241.PubMed
105.
go back to reference DeMartino AW, Kim-Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol. 2019;176(2):228–45.PubMed DeMartino AW, Kim-Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol. 2019;176(2):228–45.PubMed
106.
go back to reference Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med. 2011;51(3):576–93.PubMedPubMedCentral Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med. 2011;51(3):576–93.PubMedPubMedCentral
107.
go back to reference Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593–615.PubMedPubMedCentral Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593–615.PubMedPubMedCentral
108.
go back to reference Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide. 2019;85:35–43.PubMed Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide. 2019;85:35–43.PubMed
109.
go back to reference Rajapakse NW, Giam B, Kuruppu S, Head GA, Kaye DM. Impaired l-arginine-nitric oxide pathway contributes to the pathogenesis of resistant hypertension. Clin Sci (Lond). 2019;133(20):2061–7.PubMed Rajapakse NW, Giam B, Kuruppu S, Head GA, Kaye DM. Impaired l-arginine-nitric oxide pathway contributes to the pathogenesis of resistant hypertension. Clin Sci (Lond). 2019;133(20):2061–7.PubMed
110.
go back to reference Belzer V, Hanani M. Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia. Glia. 2019;67(7):1296–307.PubMed Belzer V, Hanani M. Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia. Glia. 2019;67(7):1296–307.PubMed
111.
go back to reference Boccellino M, Galasso G, Ambrosio P, Stiuso P, Lama S, Di Zazzo E, et al. H9c2 cardiomyocytes under hypoxic stress: biological effects mediated by sentinel downstream targets. Oxid Med Cell Longev. 2021;2021:6874146.PubMedPubMedCentral Boccellino M, Galasso G, Ambrosio P, Stiuso P, Lama S, Di Zazzo E, et al. H9c2 cardiomyocytes under hypoxic stress: biological effects mediated by sentinel downstream targets. Oxid Med Cell Longev. 2021;2021:6874146.PubMedPubMedCentral
112.
go back to reference Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta. 2020;1866(8): 165811. Schiffer TA, Lundberg JO, Weitzberg E, Carlström M. Modulation of mitochondria and NADPH oxidase function by the nitrate-nitrite-NO pathway in metabolic disease with focus on type 2 diabetes. Biochim Biophys Acta. 2020;1866(8): 165811.
113.
go back to reference Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med. 2019;285(1):2–18.PubMed Carlstrom M, Montenegro MF. Therapeutic value of stimulating the nitrate-nitrite-nitric oxide pathway to attenuate oxidative stress and restore nitric oxide bioavailability in cardiorenal disease. J Intern Med. 2019;285(1):2–18.PubMed
114.
go back to reference Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discovery. 2015;14(9):623–41.PubMed Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discovery. 2015;14(9):623–41.PubMed
115.
go back to reference Lee DY, Lee SY, Jo C, Yoon Y, Jeong JY, Hur SJ. Effect on health from consumption of meat and meat products. J Anim Sci Technol. 2021;63(5):955–76.PubMedPubMedCentral Lee DY, Lee SY, Jo C, Yoon Y, Jeong JY, Hur SJ. Effect on health from consumption of meat and meat products. J Anim Sci Technol. 2021;63(5):955–76.PubMedPubMedCentral
116.
go back to reference Hezel MP, Liu M, Schiffer TA, Larsen FJ, Checa A, Wheelock CE, et al. Effects of long-term dietary nitrate supplementation in mice. Redox Biol. 2015;5:234–42.PubMedPubMedCentral Hezel MP, Liu M, Schiffer TA, Larsen FJ, Checa A, Wheelock CE, et al. Effects of long-term dietary nitrate supplementation in mice. Redox Biol. 2015;5:234–42.PubMedPubMedCentral
117.
go back to reference Bryan NS, Alexander DD, Coughlin JR, Milkowski AL, Boffetta P. Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol. 2012;50(10):3646–65.PubMed Bryan NS, Alexander DD, Coughlin JR, Milkowski AL, Boffetta P. Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol. 2012;50(10):3646–65.PubMed
118.
go back to reference McNally B, Griffin JL, Roberts LD. Dietary inorganic nitrate: from villain to hero in metabolic disease? Mol Nutr Food Res. 2016;60(1):67–78.PubMed McNally B, Griffin JL, Roberts LD. Dietary inorganic nitrate: from villain to hero in metabolic disease? Mol Nutr Food Res. 2016;60(1):67–78.PubMed
119.
go back to reference Godfrey S, Labhasetwar P, Wate S, Pimpalkar S. How safe are the global water coverage figures? Case study from Madhya Pradesh. India Environ Monit Assess. 2011;176(1–4):561–74.PubMed Godfrey S, Labhasetwar P, Wate S, Pimpalkar S. How safe are the global water coverage figures? Case study from Madhya Pradesh. India Environ Monit Assess. 2011;176(1–4):561–74.PubMed
120.
go back to reference Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet. 1999;23(4):462–5.PubMed Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet. 1999;23(4):462–5.PubMed
121.
go back to reference Qin L, Liu X, Sun Q, Fan Z, Xia D, Ding G, et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc Natl Acad Sci USA. 2012;109(33):13434–9.PubMedPubMedCentral Qin L, Liu X, Sun Q, Fan Z, Xia D, Ding G, et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc Natl Acad Sci USA. 2012;109(33):13434–9.PubMedPubMedCentral
122.
go back to reference Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med. 2013;34(2–3):350–9.PubMedPubMedCentral Reimer RJ. SLC17: a functionally diverse family of organic anion transporters. Mol Aspects Med. 2013;34(2–3):350–9.PubMedPubMedCentral
123.
go back to reference Lundberg JO. Nitrate transport in salivary glands with implications for NO homeostasis. Proc Natl Acad Sci USA. 2012;109(33):13144–5.PubMedPubMedCentral Lundberg JO. Nitrate transport in salivary glands with implications for NO homeostasis. Proc Natl Acad Sci USA. 2012;109(33):13144–5.PubMedPubMedCentral
124.
go back to reference Hezel MP, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015;21(1):7–16.PubMed Hezel MP, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015;21(1):7–16.PubMed
125.
go back to reference Feng X, Wu Z, Xu J, Xu Y, Zhao B, Pang B, et al. Dietary nitrate supplementation prevents radiotherapy-induced xerostomia. Elife. 2021;10: e70710.PubMedPubMedCentral Feng X, Wu Z, Xu J, Xu Y, Zhao B, Pang B, et al. Dietary nitrate supplementation prevents radiotherapy-induced xerostomia. Elife. 2021;10: e70710.PubMedPubMedCentral
126.
go back to reference Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.PubMed Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67.PubMed
127.
go back to reference Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20(10):815–34.PubMed Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20(10):815–34.PubMed
128.
go back to reference Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochem Biophys Acta. 2011;1813(11):1978–86.PubMed Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochem Biophys Acta. 2011;1813(11):1978–86.PubMed
129.
go back to reference Shen W, Tang D, Wan P, Peng Z, Sun M, Guo X, et al. Identification of tissue-specific microbial profile of esophageal squamous cell carcinoma by full-length 16S rDNA sequencing. Appl Microbiol Biotechnol. 2022;106(8):3215–29.PubMed Shen W, Tang D, Wan P, Peng Z, Sun M, Guo X, et al. Identification of tissue-specific microbial profile of esophageal squamous cell carcinoma by full-length 16S rDNA sequencing. Appl Microbiol Biotechnol. 2022;106(8):3215–29.PubMed
130.
go back to reference Kovaleva O, Podlesnaya P, Rashidova M, Samoilova D, Petrenko A, Mochalnikova V, et al. Prognostic significance of the microbiome and stromal cells phenotype in esophagus squamous cell carcinoma. Biomedicines. 2021;9(7):743.PubMedPubMedCentral Kovaleva O, Podlesnaya P, Rashidova M, Samoilova D, Petrenko A, Mochalnikova V, et al. Prognostic significance of the microbiome and stromal cells phenotype in esophagus squamous cell carcinoma. Biomedicines. 2021;9(7):743.PubMedPubMedCentral
131.
go back to reference Wallace JL, Miller MJ. Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology. 2000;119(2):512–20.PubMed Wallace JL, Miller MJ. Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology. 2000;119(2):512–20.PubMed
132.
go back to reference Lanas A, Bajador E, Serrano P, Fuentes J, Carreño S, Guardia J, et al. Nitrovasodilators, low-dose aspirin, other nonsteroidal antiinflammatory drugs, and the risk of upper gastrointestinal bleeding. N Engl J Med. 2000;343(12):834–9.PubMed Lanas A, Bajador E, Serrano P, Fuentes J, Carreño S, Guardia J, et al. Nitrovasodilators, low-dose aspirin, other nonsteroidal antiinflammatory drugs, and the risk of upper gastrointestinal bleeding. N Engl J Med. 2000;343(12):834–9.PubMed
133.
go back to reference Jansson EA, Petersson J, Reinders C, Sobko T, Björne H, Phillipson M, et al. Protection from nonsteroidal anti-inflammatory drug (NSAID)-induced gastric ulcers by dietary nitrate. Free Radical Biol Med. 2007;42(4):510–8. Jansson EA, Petersson J, Reinders C, Sobko T, Björne H, Phillipson M, et al. Protection from nonsteroidal anti-inflammatory drug (NSAID)-induced gastric ulcers by dietary nitrate. Free Radical Biol Med. 2007;42(4):510–8.
134.
go back to reference Jin L, Qin L, Xia D, Liu X, Fan Z, Zhang C, et al. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats. Free Radical Biol Med. 2013;57:61–7. Jin L, Qin L, Xia D, Liu X, Fan Z, Zhang C, et al. Active secretion and protective effect of salivary nitrate against stress in human volunteers and rats. Free Radical Biol Med. 2013;57:61–7.
135.
go back to reference Eriksson KE, Yang T, Carlström M, Weitzberg E. Organ uptake and release of inorganic nitrate and nitrite in the pig. Nitric Oxide Biol Chem. 2018;75:16–26. Eriksson KE, Yang T, Carlström M, Weitzberg E. Organ uptake and release of inorganic nitrate and nitrite in the pig. Nitric Oxide Biol Chem. 2018;75:16–26.
136.
go back to reference Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radical Biol Med. 2004;37(3):395–400. Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radical Biol Med. 2004;37(3):395–400.
137.
go back to reference Hu L, Jin L, Xia D, Zhang Q, Ma L, Zheng H, et al. Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free Radical Biol Med. 2020;152:609–21. Hu L, Jin L, Xia D, Zhang Q, Ma L, Zheng H, et al. Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free Radical Biol Med. 2020;152:609–21.
138.
go back to reference Dicksved J, Halfvarson J, Rosenquist M, Järnerot G, Tysk C, Apajalahti J, et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J. 2008;2(7):716–27.PubMed Dicksved J, Halfvarson J, Rosenquist M, Järnerot G, Tysk C, Apajalahti J, et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J. 2008;2(7):716–27.PubMed
139.
go back to reference Nishikawa J, Kudo T, Sakata S, Benno Y, Sugiyama T. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand J Gastroenterol. 2009;44(2):180–6.PubMed Nishikawa J, Kudo T, Sakata S, Benno Y, Sugiyama T. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand J Gastroenterol. 2009;44(2):180–6.PubMed
140.
go back to reference Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.PubMedPubMedCentral Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.PubMedPubMedCentral
141.
go back to reference Björne H, Weitzberg E, Lundberg JO. Intragastric generation of antimicrobial nitrogen oxides from saliva–physiological and therapeutic considerations. Free Radical Biol Med. 2006;41(9):1404–12. Björne H, Weitzberg E, Lundberg JO. Intragastric generation of antimicrobial nitrogen oxides from saliva–physiological and therapeutic considerations. Free Radical Biol Med. 2006;41(9):1404–12.
142.
go back to reference Jädert C, Phillipson M, Holm L, Lundberg JO, Borniquel S. Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox Biol. 2014;2:73–81.PubMed Jädert C, Phillipson M, Holm L, Lundberg JO, Borniquel S. Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox Biol. 2014;2:73–81.PubMed
143.
go back to reference Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11): e442.PubMedPubMedCentral Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11): e442.PubMedPubMedCentral
144.
go back to reference Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.PubMed Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355(26):2792–3.PubMed
145.
go back to reference Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension (Dallas, Tex: 1979). 2010;56(2):274–81.PubMed Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension (Dallas, Tex: 1979). 2010;56(2):274–81.PubMed
146.
go back to reference Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1121–31.PubMed Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1121–31.PubMed
147.
go back to reference Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension (Dallas, Tex: 1979). 2008;51(3):784–90.PubMed Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension (Dallas, Tex: 1979). 2008;51(3):784–90.PubMed
148.
go back to reference Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radical Biol Med. 2017;105:48–67. Koch CD, Gladwin MT, Freeman BA, Lundberg JO, Weitzberg E, Morris A. Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radical Biol Med. 2017;105:48–67.
149.
go back to reference Bryan NS. Functional nitric oxide nutrition to combat cardiovascular disease. Curr Atheroscler Rep. 2018;20(5):21.PubMed Bryan NS. Functional nitric oxide nutrition to combat cardiovascular disease. Curr Atheroscler Rep. 2018;20(5):21.PubMed
150.
go back to reference Carlstrom M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf). 2018;224(1): e13080.PubMed Carlstrom M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf). 2018;224(1): e13080.PubMed
151.
go back to reference Velmurugan S, Gan JM, Rathod KS, Khambata RS, Ghosh SM, Hartley A, et al. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr. 2016;103(1):25–38.PubMed Velmurugan S, Gan JM, Rathod KS, Khambata RS, Ghosh SM, Hartley A, et al. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr. 2016;103(1):25–38.PubMed
152.
go back to reference Batista RIM, Nogueira RC, Ferreira GC, Oliveira-Paula GH, Damacena-Angelis C, Pinheiro LC, et al. Antiseptic mouthwash inhibits antihypertensive and vascular protective effects of L-arginine. Eur J Pharmacol. 2021;907: 174314.PubMed Batista RIM, Nogueira RC, Ferreira GC, Oliveira-Paula GH, Damacena-Angelis C, Pinheiro LC, et al. Antiseptic mouthwash inhibits antihypertensive and vascular protective effects of L-arginine. Eur J Pharmacol. 2021;907: 174314.PubMed
153.
go back to reference Petersson J, Carlström M, Schreiber O, Phillipson M, Christoffersson G, Jägare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radical Biol Med. 2009;46(8):1068–75. Petersson J, Carlström M, Schreiber O, Phillipson M, Christoffersson G, Jägare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radical Biol Med. 2009;46(8):1068–75.
154.
go back to reference Babateen AM, Shannon OM, Mathers JC, Siervo M. Validity and reliability of test strips for the measurement of salivary nitrite concentration with and without the use of mouthwash in healthy adults. Nitric Oxide Biol Chem. 2019;91:15–22. Babateen AM, Shannon OM, Mathers JC, Siervo M. Validity and reliability of test strips for the measurement of salivary nitrite concentration with and without the use of mouthwash in healthy adults. Nitric Oxide Biol Chem. 2019;91:15–22.
155.
go back to reference Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep. 2020;10(1):5254.PubMedPubMedCentral Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep. 2020;10(1):5254.PubMedPubMedCentral
156.
go back to reference Sundqvist ML, Lundberg JO, Weitzberg E. Effects of antiseptic mouthwash on resting metabolic rate: a randomized, double-blind, crossover study. Nitric Oxide Biol Chem. 2016;61:38–44. Sundqvist ML, Lundberg JO, Weitzberg E. Effects of antiseptic mouthwash on resting metabolic rate: a randomized, double-blind, crossover study. Nitric Oxide Biol Chem. 2016;61:38–44.
157.
go back to reference Dewhurst-Trigg R, Yeates T, Blackwell JR, Thompson C, Linoby A, Morgan PT, et al. Lowering of blood pressure after nitrate-rich vegetable consumption is abolished with the co-ingestion of thiocyanate-rich vegetables in healthy normotensive males. Nitric Oxide Biol Chem. 2018;74:39–46. Dewhurst-Trigg R, Yeates T, Blackwell JR, Thompson C, Linoby A, Morgan PT, et al. Lowering of blood pressure after nitrate-rich vegetable consumption is abolished with the co-ingestion of thiocyanate-rich vegetables in healthy normotensive males. Nitric Oxide Biol Chem. 2018;74:39–46.
158.
go back to reference Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension (Dallas, Tex: 1979). 2008;51(4):970–5.PubMed Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension (Dallas, Tex: 1979). 2008;51(4):970–5.PubMed
159.
go back to reference Bramham K, Parnell B, Nelson-Piercy C, Seed PT, Poston L, Chappell LC. Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ. 2014;348: g2301.PubMedPubMedCentral Bramham K, Parnell B, Nelson-Piercy C, Seed PT, Poston L, Chappell LC. Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ. 2014;348: g2301.PubMedPubMedCentral
160.
go back to reference Chappell LC, Enye S, Seed P, Briley AL, Poston L, Shennan AH. Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study. Hypertension (Dallas, Tex: 1979). 2008;51(4):1002–9.PubMed Chappell LC, Enye S, Seed P, Briley AL, Poston L, Shennan AH. Adverse perinatal outcomes and risk factors for preeclampsia in women with chronic hypertension: a prospective study. Hypertension (Dallas, Tex: 1979). 2008;51(4):1002–9.PubMed
161.
go back to reference Ormesher L, Myers JE, Chmiel C, Wareing M, Greenwood SL, Tropea T, et al. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: a randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide Biol Chem. 2018;80:37–44. Ormesher L, Myers JE, Chmiel C, Wareing M, Greenwood SL, Tropea T, et al. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: a randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide Biol Chem. 2018;80:37–44.
162.
go back to reference Guignabert C, Tu L, Girerd B, Ricard N, Huertas A, Montani D, et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest. 2015;147(2):529–37.PubMed Guignabert C, Tu L, Girerd B, Ricard N, Huertas A, Montani D, et al. New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication. Chest. 2015;147(2):529–37.PubMed
163.
go back to reference Kinsella JP, Neish SR, Ivy DD, Shaffer E, Abman SH. Clinical responses to prolonged treatment of persistent pulmonary hypertension of the newborn with low doses of inhaled nitric oxide. J Pediatr. 1993;123(1):103–8.PubMed Kinsella JP, Neish SR, Ivy DD, Shaffer E, Abman SH. Clinical responses to prolonged treatment of persistent pulmonary hypertension of the newborn with low doses of inhaled nitric oxide. J Pediatr. 1993;123(1):103–8.PubMed
164.
go back to reference Kinsella JP, Neish SR, Shaffer E, Abman SH. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992;340(8823):819–20.PubMed Kinsella JP, Neish SR, Shaffer E, Abman SH. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet. 1992;340(8823):819–20.PubMed
165.
go back to reference Roberts JD, Fineman JR, Morin FC, Shaul PW, Rimar S, Schreiber MD, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The inhaled nitric oxide study group. N Engl J Med. 1997;336(9):605–10.PubMed Roberts JD, Fineman JR, Morin FC, Shaul PW, Rimar S, Schreiber MD, et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The inhaled nitric oxide study group. N Engl J Med. 1997;336(9):605–10.PubMed
166.
go back to reference Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, et al. Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation. 2012;126(16):1983–92.PubMed Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, et al. Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation. 2012;126(16):1983–92.PubMed
167.
go back to reference Thum T, Fraccarollo D, Thum S, Schultheiss M, Daiber A, Wenzel P, et al. Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress. Arterioscler Thromb Vasc Biol. 2007;27(4):748–54.PubMed Thum T, Fraccarollo D, Thum S, Schultheiss M, Daiber A, Wenzel P, et al. Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress. Arterioscler Thromb Vasc Biol. 2007;27(4):748–54.PubMed
168.
go back to reference Hung H-C, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, et al. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst. 2004;96(21):1577–84.PubMed Hung H-C, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, et al. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst. 2004;96(21):1577–84.PubMed
169.
go back to reference Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.PubMed Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.PubMed
170.
go back to reference Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639.PubMed Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639.PubMed
171.
go back to reference Notay K, Incognito AV, Millar PJ. Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study. Am J Physiol Heart Circ Physiol. 2017;313(1):H59–65.PubMed Notay K, Incognito AV, Millar PJ. Acute beetroot juice supplementation on sympathetic nerve activity: a randomized, double-blind, placebo-controlled proof-of-concept study. Am J Physiol Heart Circ Physiol. 2017;313(1):H59–65.PubMed
172.
go back to reference Bock JM, Ueda K, Schneider AC, Hughes WE, Limberg JK, Bryan NS, et al. Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does not improve cardiovagal baroreflex sensitivity in older adults. Am J Physiol Heart Circ Physiol. 2018;314(1):H45–51.PubMed Bock JM, Ueda K, Schneider AC, Hughes WE, Limberg JK, Bryan NS, et al. Inorganic nitrate supplementation attenuates peripheral chemoreflex sensitivity but does not improve cardiovagal baroreflex sensitivity in older adults. Am J Physiol Heart Circ Physiol. 2018;314(1):H45–51.PubMed
173.
go back to reference Pellegrino D, Shiva S, Angelone T, Gladwin MT, Tota B. Nitrite exerts potent negative inotropy in the isolated heart via eNOS-independent nitric oxide generation and cGMP-PKG pathway activation. Biochem Biophys Acta. 2009;1787(7):818–27.PubMed Pellegrino D, Shiva S, Angelone T, Gladwin MT, Tota B. Nitrite exerts potent negative inotropy in the isolated heart via eNOS-independent nitric oxide generation and cGMP-PKG pathway activation. Biochem Biophys Acta. 2009;1787(7):818–27.PubMed
174.
go back to reference Cannon RO, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol. 1988;61(15):1338–43.PubMed Cannon RO, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol. 1988;61(15):1338–43.PubMed
175.
go back to reference Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995;25(4):807–14.PubMed Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. J Am Coll Cardiol. 1995;25(4):807–14.PubMed
176.
go back to reference Kanno S, Lee PC, Zhang Y, Ho C, Griffith BP, Shears LL, et al. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation. 2000;101(23):2742–8.PubMed Kanno S, Lee PC, Zhang Y, Ho C, Griffith BP, Shears LL, et al. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation. 2000;101(23):2742–8.PubMed
177.
go back to reference Emdin M, Aimo A, Castiglione V, Vergaro G, Georgiopoulos G, Saccaro LF, et al. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review topic of the week. J Am Coll Cardiol. 2020;76(15):1795–807.PubMed Emdin M, Aimo A, Castiglione V, Vergaro G, Georgiopoulos G, Saccaro LF, et al. Targeting cyclic guanosine monophosphate to treat heart failure: JACC review topic of the week. J Am Coll Cardiol. 2020;76(15):1795–807.PubMed
178.
go back to reference Raubenheimer K, Hickey D, Leveritt M, Fassett R, Ortiz de Zevallos Munoz J, Allen JD, et al. Acute effects of nitrate-rich beetroot juice on blood pressure, hemostasis and vascular inflammation markers in healthy older adults: a randomized, placebo-controlled crossover study. Nutrients. 2017;9(11):1270.PubMedPubMedCentral Raubenheimer K, Hickey D, Leveritt M, Fassett R, Ortiz de Zevallos Munoz J, Allen JD, et al. Acute effects of nitrate-rich beetroot juice on blood pressure, hemostasis and vascular inflammation markers in healthy older adults: a randomized, placebo-controlled crossover study. Nutrients. 2017;9(11):1270.PubMedPubMedCentral
179.
go back to reference Mónica FZ, Bian K, Murad F. The endothelium-dependent nitric oxide-cGMP pathway. Adv Pharmacol. 2016;77:1–27.PubMed Mónica FZ, Bian K, Murad F. The endothelium-dependent nitric oxide-cGMP pathway. Adv Pharmacol. 2016;77:1–27.PubMed
180.
go back to reference Padala SK, Lavelle MP, Sidhu MS, Cabral KP, Morrone D, Boden WE, et al. Antianginal therapy for stable ischemic heart disease: a contemporary review. J Cardiovasc Pharmacol Ther. 2017;22(6):499–510.PubMed Padala SK, Lavelle MP, Sidhu MS, Cabral KP, Morrone D, Boden WE, et al. Antianginal therapy for stable ischemic heart disease: a contemporary review. J Cardiovasc Pharmacol Ther. 2017;22(6):499–510.PubMed
181.
go back to reference Reddy YNV, Lewis GD, Shah SJ, LeWinter M, Semigran M, Davila-Roman VG, et al. INDIE-HFpEF (inorganic nitrite delivery to improve exercise capacity in heart failure with preserved ejection fraction): rationale and design. Circ Heart Fail. 2017;10(5): e003862.PubMedPubMedCentral Reddy YNV, Lewis GD, Shah SJ, LeWinter M, Semigran M, Davila-Roman VG, et al. INDIE-HFpEF (inorganic nitrite delivery to improve exercise capacity in heart failure with preserved ejection fraction): rationale and design. Circ Heart Fail. 2017;10(5): e003862.PubMedPubMedCentral
182.
go back to reference Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: a better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol. 2018;102:1–10.PubMed Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: a better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol. 2018;102:1–10.PubMed
183.
go back to reference Thadani U. Secondary preventive potential of nitrates in ischaemic heart disease. Eur Heart J. 1996;17(Suppl F):30–6.PubMed Thadani U. Secondary preventive potential of nitrates in ischaemic heart disease. Eur Heart J. 1996;17(Suppl F):30–6.PubMed
184.
go back to reference Steitieh D, Amin N. Angina pectoris worsened by mouthwash. Proc (Bayl Univ Med Cent). 2019;32(4):570–1.PubMed Steitieh D, Amin N. Angina pectoris worsened by mouthwash. Proc (Bayl Univ Med Cent). 2019;32(4):570–1.PubMed
185.
go back to reference van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MPV, Bronzwaer JGF, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126(7):830–9.PubMed van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MPV, Bronzwaer JGF, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126(7):830–9.PubMed
186.
go back to reference Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4(4):312–24.PubMed Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4(4):312–24.PubMed
187.
go back to reference Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550–9.PubMed Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550–9.PubMed
188.
go back to reference van Empel VPM, Mariani J, Borlaug BA, Kaye DM. Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction. J Am Heart Assoc. 2014;3(6): e001293.PubMedPubMedCentral van Empel VPM, Mariani J, Borlaug BA, Kaye DM. Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction. J Am Heart Assoc. 2014;3(6): e001293.PubMedPubMedCentral
189.
go back to reference Srivaratharajah K, Coutinho T, deKemp R, Liu P, Haddad H, Stadnick E, et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail. 2016;9(7): e002562.PubMed Srivaratharajah K, Coutinho T, deKemp R, Liu P, Haddad H, Stadnick E, et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail. 2016;9(7): e002562.PubMed
190.
go back to reference Lai Y-C, Tabima DM, Dube JJ, Hughan KS, Vanderpool RR, Goncharov DA, et al. SIRT3-AMP-activated protein kinase activation by nitrite and metformin improves hyperglycemia and normalizes pulmonary hypertension associated with heart failure with preserved ejection fraction. Circulation. 2016;133(8):717–31.PubMedPubMedCentral Lai Y-C, Tabima DM, Dube JJ, Hughan KS, Vanderpool RR, Goncharov DA, et al. SIRT3-AMP-activated protein kinase activation by nitrite and metformin improves hyperglycemia and normalizes pulmonary hypertension associated with heart failure with preserved ejection fraction. Circulation. 2016;133(8):717–31.PubMedPubMedCentral
191.
go back to reference Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13(2):149–59.PubMed Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13(2):149–59.PubMed
192.
go back to reference Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, et al. Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: a double-blind, placebo-controlled, randomized trial. Circ Heart Failure. 2015;8(5):914–20.PubMed Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, et al. Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: a double-blind, placebo-controlled, randomized trial. Circ Heart Failure. 2015;8(5):914–20.PubMed
193.
go back to reference Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB, Davis EM, et al. Screening for prediabetes and type 2 diabetes: US preventive services task force recommendation statement. JAMA. 2021;326(8):736–43.PubMed Davidson KW, Barry MJ, Mangione CM, Cabana M, Caughey AB, Davis EM, et al. Screening for prediabetes and type 2 diabetes: US preventive services task force recommendation statement. JAMA. 2021;326(8):736–43.PubMed
194.
go back to reference Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the american heart association. Circulation. 2016;134(23):e535–78.PubMed Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the american heart association. Circulation. 2016;134(23):e535–78.PubMed
195.
go back to reference He S, Wang J, Zhang X, Qian X, Yan S, Wang W, et al. Long-term influence of type 2 diabetes and metabolic syndrome on all-cause and cardiovascular death, and microvascular and macrovascular complications in Chinese adults—a 30-year follow-up of the Da Qing Diabetes Study. Diabetes Res Clin Pract. 2022;191: 110048.PubMed He S, Wang J, Zhang X, Qian X, Yan S, Wang W, et al. Long-term influence of type 2 diabetes and metabolic syndrome on all-cause and cardiovascular death, and microvascular and macrovascular complications in Chinese adults—a 30-year follow-up of the Da Qing Diabetes Study. Diabetes Res Clin Pract. 2022;191: 110048.PubMed
196.
go back to reference Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341: c4229.PubMedPubMedCentral Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341: c4229.PubMedPubMedCentral
197.
go back to reference Liese AD, Nichols M, Sun X, D’Agostino RB, Haffner SM. Adherence to the DASH Diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(8):1434–6.PubMedPubMedCentral Liese AD, Nichols M, Sun X, D’Agostino RB, Haffner SM. Adherence to the DASH Diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(8):1434–6.PubMedPubMedCentral
198.
go back to reference Long J, Cai Q, Steinwandel M, Hargreaves MK, Bordenstein SR, Blot WJ, et al. Association of oral microbiome with type 2 diabetes risk. J Periodontal Res. 2017;52(3):636–43.PubMedPubMedCentral Long J, Cai Q, Steinwandel M, Hargreaves MK, Bordenstein SR, Blot WJ, et al. Association of oral microbiome with type 2 diabetes risk. J Periodontal Res. 2017;52(3):636–43.PubMedPubMedCentral
199.
go back to reference Wang R-R, Xu Y-S, Ji M-M, Zhang L, Li D, Lang Q, et al. Association of the oral microbiome with the progression of impaired fasting glucose in a Chinese elderly population. J Oral Microbiol. 2019;11(1):1605789.PubMedPubMedCentral Wang R-R, Xu Y-S, Ji M-M, Zhang L, Li D, Lang Q, et al. Association of the oral microbiome with the progression of impaired fasting glucose in a Chinese elderly population. J Oral Microbiol. 2019;11(1):1605789.PubMedPubMedCentral
200.
go back to reference Graves DT, Corrêa JD, Silva TA. The oral microbiota is modified by systemic diseases. J Dent Res. 2019;98(2):148–56.PubMed Graves DT, Corrêa JD, Silva TA. The oral microbiota is modified by systemic diseases. J Dent Res. 2019;98(2):148–56.PubMed
201.
go back to reference Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.PubMed Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2(7):593–602.PubMed
202.
go back to reference Bahadoran Z, Mirmiran P, Ghasemi A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol Metab. 2020;31(2):118–30.PubMed Bahadoran Z, Mirmiran P, Ghasemi A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol Metab. 2020;31(2):118–30.PubMed
203.
go back to reference Chu S, Bohlen HG. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am J Physiol Renal Physiol. 2004;287(3):F384–92.PubMed Chu S, Bohlen HG. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am J Physiol Renal Physiol. 2004;287(3):F384–92.PubMed
204.
go back to reference Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation. 2003;107(7):1017–23.PubMed Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation. 2003;107(7):1017–23.PubMed
205.
go back to reference Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.PubMedPubMedCentral Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.PubMedPubMedCentral
206.
go back to reference Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2019;10:1607.PubMed Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol. 2019;10:1607.PubMed
207.
208.
go back to reference Carlström M, Larsen FJ, Nyström T, Hezel M, Borniquel S, Weitzberg E, et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci USA. 2010;107(41):17716–20.PubMedPubMedCentral Carlström M, Larsen FJ, Nyström T, Hezel M, Borniquel S, Weitzberg E, et al. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci USA. 2010;107(41):17716–20.PubMedPubMedCentral
209.
go back to reference Ohtake K, Ehara N, Chiba H, Nakano G, Sonoda K, Ito J, et al. Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high-fat diet and ovariectomy in mice. Am J Physiol Endocrinol Metab. 2017;312(4):E300–8.PubMed Ohtake K, Ehara N, Chiba H, Nakano G, Sonoda K, Ito J, et al. Dietary nitrite reverses features of postmenopausal metabolic syndrome induced by high-fat diet and ovariectomy in mice. Am J Physiol Endocrinol Metab. 2017;312(4):E300–8.PubMed
210.
go back to reference Nyström T, Ortsäter H, Huang Z, Zhang F, Larsen FJ, Weitzberg E, et al. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radical Biol Med. 2012;53(5):1017–23. Nyström T, Ortsäter H, Huang Z, Zhang F, Larsen FJ, Weitzberg E, et al. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radical Biol Med. 2012;53(5):1017–23.
211.
go back to reference Khalifi S, Rahimipour A, Jeddi S, Ghanbari M, Kazerouni F, Ghasemi A. Dietary nitrate improves glucose tolerance and lipid profile in an animal model of hyperglycemia. Nitric Oxide Biol Chem. 2015;44:24–30. Khalifi S, Rahimipour A, Jeddi S, Ghanbari M, Kazerouni F, Ghasemi A. Dietary nitrate improves glucose tolerance and lipid profile in an animal model of hyperglycemia. Nitric Oxide Biol Chem. 2015;44:24–30.
212.
go back to reference Gheibi S, Jeddi S, Carlström M, Gholami H, Ghasemi A. Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide Biol Chem. 2018;75:27–41. Gheibi S, Jeddi S, Carlström M, Gholami H, Ghasemi A. Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide Biol Chem. 2018;75:27–41.
213.
go back to reference Li T, Lu X, Sun Y, Yang X. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food Nutr Res. 2016;60:32010.PubMed Li T, Lu X, Sun Y, Yang X. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food Nutr Res. 2016;60:32010.PubMed
214.
go back to reference Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide Biol Chem. 2017;70:9–24. Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide Biol Chem. 2017;70:9–24.
215.
go back to reference Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications. Nutr Metab (Lond). 2015;12:16.PubMed Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications. Nutr Metab (Lond). 2015;12:16.PubMed
216.
go back to reference Gheibi S, Bakhtiarzadeh F, Jeddi S, Farrokhfall K, Zardooz H, Ghasemi A. Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats. Nitric Oxide Biol Chem. 2017;64:39–51. Gheibi S, Bakhtiarzadeh F, Jeddi S, Farrokhfall K, Zardooz H, Ghasemi A. Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats. Nitric Oxide Biol Chem. 2017;64:39–51.
217.
go back to reference Jiang H, Torregrossa AC, Potts A, Pierini D, Aranke M, Garg HK, et al. Dietary nitrite improves insulin signaling through GLUT4 translocation. Free Radical Biol Med. 2014;67:51–7. Jiang H, Torregrossa AC, Potts A, Pierini D, Aranke M, Garg HK, et al. Dietary nitrite improves insulin signaling through GLUT4 translocation. Free Radical Biol Med. 2014;67:51–7.
218.
go back to reference Roberts LD, Ashmore T, Kotwica AO, Murfitt SA, Fernandez BO, Feelisch M, et al. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes. 2015;64(2):471–84.PubMed Roberts LD, Ashmore T, Kotwica AO, Murfitt SA, Fernandez BO, Feelisch M, et al. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes. 2015;64(2):471–84.PubMed
219.
go back to reference Joshipura KJ, Muñoz-Torres FJ, Morou-Bermudez E, Patel RP. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes. Nitric Oxide Biol Chem. 2017;71:14–20. Joshipura KJ, Muñoz-Torres FJ, Morou-Bermudez E, Patel RP. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes. Nitric Oxide Biol Chem. 2017;71:14–20.
220.
go back to reference Mills CE, Govoni V, Faconti L, Casagrande M-L, Morant SV, Crickmore H, et al. A randomised, factorial trial to reduce arterial stiffness independently of blood pressure: Proof of concept? The VaSera trial testing dietary nitrate and spironolactone. Br J Clin Pharmacol. 2020;86(5):891–902.PubMedPubMedCentral Mills CE, Govoni V, Faconti L, Casagrande M-L, Morant SV, Crickmore H, et al. A randomised, factorial trial to reduce arterial stiffness independently of blood pressure: Proof of concept? The VaSera trial testing dietary nitrate and spironolactone. Br J Clin Pharmacol. 2020;86(5):891–902.PubMedPubMedCentral
221.
go back to reference Shepherd AI, Gilchrist M, Winyard PG, Jones AM, Hallmann E, Kazimierczak R, et al. Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled crossover trial. Free Radical Biol Med. 2015;86:200–8. Shepherd AI, Gilchrist M, Winyard PG, Jones AM, Hallmann E, Kazimierczak R, et al. Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled crossover trial. Free Radical Biol Med. 2015;86:200–8.
222.
go back to reference Greenway FL, Predmore BL, Flanagan DR, Giordano T, Qiu Y, Brandon A, et al. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol Ther. 2012;14(7):552–60.PubMedPubMedCentral Greenway FL, Predmore BL, Flanagan DR, Giordano T, Qiu Y, Brandon A, et al. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol Ther. 2012;14(7):552–60.PubMedPubMedCentral
223.
go back to reference Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radical Biol Med. 2013;60:89–97. Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radical Biol Med. 2013;60:89–97.
224.
go back to reference Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–56.PubMed Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–56.PubMed
225.
go back to reference Bauer PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 2018;27(1):101–17.PubMed Bauer PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 2018;27(1):101–17.PubMed
226.
go back to reference de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62.PubMed de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62.PubMed
227.
go back to reference Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.PubMedPubMedCentral Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.PubMedPubMedCentral
228.
go back to reference Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.PubMed Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.PubMed
229.
go back to reference Ahluwalia A, Gladwin M, Coleman GD, Hord N, Howard G, Kim-Shapiro DB, et al. Dietary nitrate and the epidemiology of cardiovascular disease: report from a national heart, lung, and blood institute workshop. J Am Heart Assoc. 2016;5(7): e003402.PubMedPubMedCentral Ahluwalia A, Gladwin M, Coleman GD, Hord N, Howard G, Kim-Shapiro DB, et al. Dietary nitrate and the epidemiology of cardiovascular disease: report from a national heart, lung, and blood institute workshop. J Am Heart Assoc. 2016;5(7): e003402.PubMedPubMedCentral
230.
go back to reference Bahadoran Z, Mirmiran P, Carlstrom M, Ghasemi A. Inorganic nitrate: a potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide. 2021;116:38–46.PubMed Bahadoran Z, Mirmiran P, Carlstrom M, Ghasemi A. Inorganic nitrate: a potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide. 2021;116:38–46.PubMed
231.
go back to reference Bilson J, Sethi JK, Byrne CD. Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc Nutr Soc. 2022;81(2):146–61.PubMed Bilson J, Sethi JK, Byrne CD. Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc Nutr Soc. 2022;81(2):146–61.PubMed
232.
go back to reference Long MT, Noureddin M, Lim JK. AGA clinical practice update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review. Gastroenterology. 2022;163(3):764-774.e1.PubMed Long MT, Noureddin M, Lim JK. AGA clinical practice update: diagnosis and management of nonalcoholic fatty liver disease in lean individuals: expert review. Gastroenterology. 2022;163(3):764-774.e1.PubMed
233.
go back to reference Watanabe S, Hashimoto E, Ikejima K, Uto H, Ono M, Sumida Y, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. J Gastroenterol. 2015;50(4):364–77.PubMed Watanabe S, Hashimoto E, Ikejima K, Uto H, Ono M, Sumida Y, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. J Gastroenterol. 2015;50(4):364–77.PubMed
234.
go back to reference Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, et al. American Association of Clinical Endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the american association for the study of liver diseases (AASLD). Endocr Pract. 2022;28(5):528–62.PubMed Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, et al. American Association of Clinical Endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings: co-sponsored by the american association for the study of liver diseases (AASLD). Endocr Pract. 2022;28(5):528–62.PubMed
235.
go back to reference Wang H, Hu L, Li L, Wu X, Fan Z, Zhang C, et al. Inorganic nitrate alleviates the senescence-related decline in liver function. Sci China Life Sci. 2018;61(1):24–34.PubMed Wang H, Hu L, Li L, Wu X, Fan Z, Zhang C, et al. Inorganic nitrate alleviates the senescence-related decline in liver function. Sci China Life Sci. 2018;61(1):24–34.PubMed
236.
go back to reference Aluko EO, Omobowale TO, Oyagbemi AA, Adejumobi OA, Ajibade TO, Fasanmade AA. Reduction in nitric oxide bioavailability shifts serum lipid content towards atherogenic lipoprotein in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;101:792–7. Aluko EO, Omobowale TO, Oyagbemi AA, Adejumobi OA, Ajibade TO, Fasanmade AA. Reduction in nitric oxide bioavailability shifts serum lipid content towards atherogenic lipoprotein in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;101:792–7.
237.
go back to reference Sato I, Yamamoto S, Kakimoto M, Fujii M, Honma K, Kumazaki S, et al. Suppression of nitric oxide synthase aggravates non-alcoholic steatohepatitis and atherosclerosis in SHRSP5/Dmcr rat via acceleration of abnormal lipid metabolism. Pharmacol Rep. 2022;74(4):669–83.PubMed Sato I, Yamamoto S, Kakimoto M, Fujii M, Honma K, Kumazaki S, et al. Suppression of nitric oxide synthase aggravates non-alcoholic steatohepatitis and atherosclerosis in SHRSP5/Dmcr rat via acceleration of abnormal lipid metabolism. Pharmacol Rep. 2022;74(4):669–83.PubMed
238.
go back to reference Eccleston HB, Andringa KK, Betancourt AM, King AL, Mantena SK, Swain TM, et al. Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid Redox Signal. 2011;15(2):447–59.PubMedPubMedCentral Eccleston HB, Andringa KK, Betancourt AM, King AL, Mantena SK, Swain TM, et al. Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid Redox Signal. 2011;15(2):447–59.PubMedPubMedCentral
239.
go back to reference Lázár Z, Mészáros M, Bikov A. The nitric oxide pathway in pulmonary arterial hypertension: pathomechanism, biomarkers and drug targets. Curr Med Chem. 2020;27(42):7168–88.PubMed Lázár Z, Mészáros M, Bikov A. The nitric oxide pathway in pulmonary arterial hypertension: pathomechanism, biomarkers and drug targets. Curr Med Chem. 2020;27(42):7168–88.PubMed
240.
go back to reference Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol. 2015;6:20.PubMedPubMedCentral Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol. 2015;6:20.PubMedPubMedCentral
241.
go back to reference Abdulla MH, Johns EJ. The role of brain angiotensin II (type 2) receptors and nitric oxide in the renal sympathoinhibitory response to acute volume expansion in conscious rats. J Hypertens. 2017;35(2):338–47.PubMed Abdulla MH, Johns EJ. The role of brain angiotensin II (type 2) receptors and nitric oxide in the renal sympathoinhibitory response to acute volume expansion in conscious rats. J Hypertens. 2017;35(2):338–47.PubMed
242.
go back to reference Kiss JP. Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res Bull. 2000;52(6):459–66.PubMed Kiss JP. Role of nitric oxide in the regulation of monoaminergic neurotransmission. Brain Res Bull. 2000;52(6):459–66.PubMed
243.
go back to reference Oghbaei H, Alipour MR, Hamidian G, Ahmadi M, Ghorbanzadeh V, Keyhanmanesh R. Two months sodium nitrate supplementation alleviates testicular injury in streptozotocin-induced diabetic male rats. Exp Physiol. 2018;103(12):1603–17.PubMed Oghbaei H, Alipour MR, Hamidian G, Ahmadi M, Ghorbanzadeh V, Keyhanmanesh R. Two months sodium nitrate supplementation alleviates testicular injury in streptozotocin-induced diabetic male rats. Exp Physiol. 2018;103(12):1603–17.PubMed
244.
go back to reference Keyhanmanesh R, Hamidian G, Alipour MR, Oghbaei H. Beneficial treatment effects of dietary nitrate supplementation on testicular injury in streptozotocin-induced diabetic male rats. Reprod Biomed Online. 2019;39(3):357–71.PubMed Keyhanmanesh R, Hamidian G, Alipour MR, Oghbaei H. Beneficial treatment effects of dietary nitrate supplementation on testicular injury in streptozotocin-induced diabetic male rats. Reprod Biomed Online. 2019;39(3):357–71.PubMed
245.
go back to reference García-Jaramillo M, Beaver LM, Truong L, Axton ER, Keller RM, Prater MC, et al. Nitrate and nitrite exposure leads to mild anxiogenic-like behavior and alters brain metabolomic profile in zebrafish. PLoS ONE. 2020;15(12): e0240070.PubMedPubMedCentral García-Jaramillo M, Beaver LM, Truong L, Axton ER, Keller RM, Prater MC, et al. Nitrate and nitrite exposure leads to mild anxiogenic-like behavior and alters brain metabolomic profile in zebrafish. PLoS ONE. 2020;15(12): e0240070.PubMedPubMedCentral
246.
go back to reference Wightman EL, Haskell-Ramsay CF, Thompson KG, Blackwell JR, Winyard PG, Forster J, et al. Dietary nitrate modulates cerebral blood flow parameters and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Physiol Behav. 2015;149:149–58.PubMed Wightman EL, Haskell-Ramsay CF, Thompson KG, Blackwell JR, Winyard PG, Forster J, et al. Dietary nitrate modulates cerebral blood flow parameters and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Physiol Behav. 2015;149:149–58.PubMed
247.
go back to reference Gilchrist M, Winyard PG, Fulford J, Anning C, Shore AC, Benjamin N. Dietary nitrate supplementation improves reaction time in type 2 diabetes: development and application of a novel nitrate-depleted beetroot juice placebo. Nitric Oxide Biol Chem. 2014;40:67–74. Gilchrist M, Winyard PG, Fulford J, Anning C, Shore AC, Benjamin N. Dietary nitrate supplementation improves reaction time in type 2 diabetes: development and application of a novel nitrate-depleted beetroot juice placebo. Nitric Oxide Biol Chem. 2014;40:67–74.
248.
249.
go back to reference Ruiz L, Bacigalupe R, García-Carral C, Boix-Amoros A, Argüello H, Silva CB, et al. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci Rep. 2019;9(1):8435.PubMedPubMedCentral Ruiz L, Bacigalupe R, García-Carral C, Boix-Amoros A, Argüello H, Silva CB, et al. Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci Rep. 2019;9(1):8435.PubMedPubMedCentral
250.
go back to reference Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker NM. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci Rep. 2017;7:43481.PubMedPubMedCentral Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker NM. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates. Sci Rep. 2017;7:43481.PubMedPubMedCentral
251.
go back to reference Gentle SJ, Ahmed KA, Yi N, Morrow CD, Ambalavanan N, Lal CV, et al. Bronchopulmonary dysplasia is associated with reduced oral nitrate reductase activity in extremely preterm infants. Redox Biol. 2021;38: 101782.PubMed Gentle SJ, Ahmed KA, Yi N, Morrow CD, Ambalavanan N, Lal CV, et al. Bronchopulmonary dysplasia is associated with reduced oral nitrate reductase activity in extremely preterm infants. Redox Biol. 2021;38: 101782.PubMed
252.
go back to reference Ambalavanan N, Cotten CM, Page GP, Carlo WA, Murray JC, Bhattacharya S, et al. Integrated genomic analyses in bronchopulmonary dysplasia. J Pediatr. 2015;166(3):531–7.PubMed Ambalavanan N, Cotten CM, Page GP, Carlo WA, Murray JC, Bhattacharya S, et al. Integrated genomic analyses in bronchopulmonary dysplasia. J Pediatr. 2015;166(3):531–7.PubMed
253.
go back to reference Klinger G, Sokolover N, Boyko V, Sirota L, Lerner-Geva L, Reichman B. Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants. Am J Obstet Gynecol. 2013;208(2):115.e1-115.e9.PubMed Klinger G, Sokolover N, Boyko V, Sirota L, Lerner-Geva L, Reichman B. Perinatal risk factors for bronchopulmonary dysplasia in a national cohort of very-low-birthweight infants. Am J Obstet Gynecol. 2013;208(2):115.e1-115.e9.PubMed
254.
go back to reference Wagner BD, Sontag MK, Harris JK, Miller JI, Morrow L, Robertson CE, et al. Airway microbial community turnover differs by BPD severity in ventilated preterm infants. PLoS ONE. 2017;12(1): e0170120.PubMedPubMedCentral Wagner BD, Sontag MK, Harris JK, Miller JI, Morrow L, Robertson CE, et al. Airway microbial community turnover differs by BPD severity in ventilated preterm infants. PLoS ONE. 2017;12(1): e0170120.PubMedPubMedCentral
255.
go back to reference Chen S-M, Lin C-P, Jan M-S. Early gut microbiota changes in preterm infants with bronchopulmonary dysplasia: a pilot case-control study. Am J Perinatol. 2021;38(11):1142–9.PubMed Chen S-M, Lin C-P, Jan M-S. Early gut microbiota changes in preterm infants with bronchopulmonary dysplasia: a pilot case-control study. Am J Perinatol. 2021;38(11):1142–9.PubMed
256.
go back to reference Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc. 2015;12(Suppl 2):S150–6.PubMed Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory disease. Ann Am Thorac Soc. 2015;12(Suppl 2):S150–6.PubMed
257.
go back to reference Kolpen M, Kragh KN, Bjarnsholt T, Line L, Hansen CR, Dalbøge CS, et al. Denitrification by cystic fibrosis pathogens—Stenotrophomonas maltophilia is dormant in sputum. Int J Med Microbiol. 2015;305(1):1–10.PubMed Kolpen M, Kragh KN, Bjarnsholt T, Line L, Hansen CR, Dalbøge CS, et al. Denitrification by cystic fibrosis pathogens—Stenotrophomonas maltophilia is dormant in sputum. Int J Med Microbiol. 2015;305(1):1–10.PubMed
258.
go back to reference Kolpen M, Kühl M, Bjarnsholt T, Moser C, Hansen CR, Liengaard L, et al. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS ONE. 2014;9(1): e84353.PubMedPubMedCentral Kolpen M, Kühl M, Bjarnsholt T, Moser C, Hansen CR, Liengaard L, et al. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS ONE. 2014;9(1): e84353.PubMedPubMedCentral
259.
go back to reference Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.PubMed Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.PubMed
260.
go back to reference Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol. 2008;294(1):F1–9.PubMed Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol Renal Physiol. 2008;294(1):F1–9.PubMed
261.
go back to reference Tumur Z, Niwa T. Oral sorbent AST-120 increases renal NO synthesis in uremic rats. J Ren Nutr. 2008;18(1):60–4.PubMed Tumur Z, Niwa T. Oral sorbent AST-120 increases renal NO synthesis in uremic rats. J Ren Nutr. 2008;18(1):60–4.PubMed
262.
go back to reference Kuczmarski JM, Martens CR, Kim J, Lennon-Edwards SL, Edwards DG. Cardiac function is preserved following 4 weeks of voluntary wheel running in a rodent model of chronic kidney disease. J Appl Physiol (1985). 2014;117(5):482–91.PubMed Kuczmarski JM, Martens CR, Kim J, Lennon-Edwards SL, Edwards DG. Cardiac function is preserved following 4 weeks of voluntary wheel running in a rodent model of chronic kidney disease. J Appl Physiol (1985). 2014;117(5):482–91.PubMed
263.
go back to reference Al Suleimani YM, Al Za’abi M, Ramkumar A, Al Mahruqi AS, Tageldin MH, Nemmar A, et al. Influence of treatment with gum acacia on renal vascular responses in a rat model of chronic kidney disease. Eur Rev Med Pharmacol Sci. 2015;19(3):498–506.PubMed Al Suleimani YM, Al Za’abi M, Ramkumar A, Al Mahruqi AS, Tageldin MH, Nemmar A, et al. Influence of treatment with gum acacia on renal vascular responses in a rat model of chronic kidney disease. Eur Rev Med Pharmacol Sci. 2015;19(3):498–506.PubMed
264.
go back to reference Sindler AL, Fleenor BS, Calvert JW, Marshall KD, Zigler ML, Lefer DJ, et al. Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell. 2011;10(3):429–37.PubMed Sindler AL, Fleenor BS, Calvert JW, Marshall KD, Zigler ML, Lefer DJ, et al. Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell. 2011;10(3):429–37.PubMed
265.
go back to reference Okamoto M, Tsuchiya K, Kanematsu Y, Izawa Y, Yoshizumi M, Kagawa S, et al. Nitrite-derived nitric oxide formation following ischemia-reperfusion injury in kidney. Am J Physiol Renal Physiol. 2005;288(1):F182–7.PubMed Okamoto M, Tsuchiya K, Kanematsu Y, Izawa Y, Yoshizumi M, Kagawa S, et al. Nitrite-derived nitric oxide formation following ischemia-reperfusion injury in kidney. Am J Physiol Renal Physiol. 2005;288(1):F182–7.PubMed
266.
go back to reference Tripatara P, Patel NSA, Webb A, Rathod K, Lecomte FMJ, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol. 2007;18(2):570–80.PubMed Tripatara P, Patel NSA, Webb A, Rathod K, Lecomte FMJ, Mazzon E, et al. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J Am Soc Nephrol. 2007;18(2):570–80.PubMed
267.
go back to reference Tsuchiya K, Tomita S, Ishizawa K, Abe S, Ikeda Y, Kihira Y, et al. Dietary nitrite ameliorates renal injury in L-NAME-induced hypertensive rats. Nitric Oxide Biol Chem. 2010;22(2):98–103. Tsuchiya K, Tomita S, Ishizawa K, Abe S, Ikeda Y, Kihira Y, et al. Dietary nitrite ameliorates renal injury in L-NAME-induced hypertensive rats. Nitric Oxide Biol Chem. 2010;22(2):98–103.
268.
go back to reference Tatematsu S, Wakino S, Kanda T, Homma K, Yoshioka K, Hasegawa K, et al. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 2007;18(3):741–9.PubMed Tatematsu S, Wakino S, Kanda T, Homma K, Yoshioka K, Hasegawa K, et al. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 2007;18(3):741–9.PubMed
269.
go back to reference Yang T, Zhang X-M, Tarnawski L, Peleli M, Zhuge Z, Terrando N, et al. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biol. 2017;13:320–30.PubMedPubMedCentral Yang T, Zhang X-M, Tarnawski L, Peleli M, Zhuge Z, Terrando N, et al. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biol. 2017;13:320–30.PubMedPubMedCentral
270.
go back to reference Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that moderate the effect of nitrate ingestion on exercise performance in adults: a systematic review with meta-analyses and meta-regressions. Adv Nutr. 2022;13:1866–81.PubMedPubMedCentral Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that moderate the effect of nitrate ingestion on exercise performance in adults: a systematic review with meta-analyses and meta-regressions. Adv Nutr. 2022;13:1866–81.PubMedPubMedCentral
271.
go back to reference Goh CE, Bohn B, Marotz C, Molinsky R, Roy S, Paster BJ, et al. Nitrite generating and depleting capacity of the oral microbiome and cardiometabolic risk: results from ORIGINS. J Am Heart Assoc. 2022;11(10): e023038.PubMedPubMedCentral Goh CE, Bohn B, Marotz C, Molinsky R, Roy S, Paster BJ, et al. Nitrite generating and depleting capacity of the oral microbiome and cardiometabolic risk: results from ORIGINS. J Am Heart Assoc. 2022;11(10): e023038.PubMedPubMedCentral
272.
go back to reference Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol. 2016;7:51.PubMedPubMedCentral Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol. 2016;7:51.PubMedPubMedCentral
273.
go back to reference Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of polyphenols in sports performance: from nutritional genomics to the gut microbiota toward phytonutritional epigenomics. Nutrients. 2020;12(5):1265.PubMedPubMedCentral Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of polyphenols in sports performance: from nutritional genomics to the gut microbiota toward phytonutritional epigenomics. Nutrients. 2020;12(5):1265.PubMedPubMedCentral
Metadata
Title
From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease
Authors
Hongyu Liu
Yisheng Huang
Mingshu Huang
Min Wang
Yue Ming
Weixing Chen
Yuanxin Chen
Zhengming Tang
Bo Jia
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01413-y

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue