Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2020

01-10-2020 | Night-Blindness | Original Research Article

Ring analysis of multifocal oscillatory potentials (mfOPs) in cCSNB suggests near-normal ON–OFF pathways at the fovea only

Authors: Allison L. Dorfman, Mathieu Gauvin, Dylan Vatcher, John M. Little, Robert C. Polomeno, Pierre Lachapelle

Published in: Documenta Ophthalmologica | Issue 2/2020

Login to get access

Abstract

Purpose

To investigate the center-periphery distribution of ON and OFF retinal responses in complete congenital stationary night blindness (cCSNB).

Methods

Photopic full-field flash ERGs (photopic ffERGs) and OPs (photopic ffOPs) and slow m-sequence (to enhance OP prominence) mfERGs (and filtered mfOPs) evoked by a 37 hexagon stimulus array were recorded from normal subjects and cCSNB patients. Discrete wavelet transform (DWT) analysis of photopic ffERGs and mfERGs was also performed in order to assess the contribution of the ON and OFF retinal pathways (i.e., OFF-to-ON ratio) in both cohorts.

Results

As expected, the photopic ffERG (and ffOPs) responses in cCSNB were devoid of the first two of the three OPs (i.e., OP2 and OP3 and OP4) normally seen on the ascending limb of the b-wave. A similar finding was also noted in the mfERGs (and mfOPs) of ring 4. In contrast, the mfERGs (and mfOPs) of ring 1 included all three OPs. DWT analysis revealed that while in normal subjects, the OFF-to-ON ratio of mfERGs slightly increased from rings 1 to 4 (from 0.61 ± 0.03 to 0.78 ± 0.04; p < 0.05; median: from 0.62 to 0.79; p < 0.05), in cCSNB this ratio increased significantly more [from 0.73 ± 0.13 (ring 1) to 1.18 ± 0.17 (ring 4); p < 0.05; median: 0.78 to 1.22; p < 0.05], hence from a normal ON-dominated ratio (central ring) to an OFF-dominated ratio (peripheral ring).

Conclusions

Our results show a clear discrepancy of ON and OFF mfOP components in cCSNB. Responses originating from the most central ring (i.e., ring 1) disclosed a near-normal electrophysiological contribution (as revealed with the presence of OP2, OP3 and OP4 as well as with the DWT OFF-to-ON ratio) of the retinal ON and OFF pathways in mfERG (and mfOPs) responses compared to responses from the more peripheral ring (and ffOP) which are devoid of the ON OPs (i.e., OP2 and OP3).
Appendix
Available only for authorised users
Literature
1.
go back to reference Der Kaloustian VM, Baghdassarian SA (1972) The autosomal recessive variety of congenital stationary night-blindness with myopia. J Med Genet 9(1):67–69CrossRef Der Kaloustian VM, Baghdassarian SA (1972) The autosomal recessive variety of congenital stationary night-blindness with myopia. J Med Genet 9(1):67–69CrossRef
2.
go back to reference Miyake Y (ed) (2006) Complete and incomplete types of CSNB. In: Electrodiagnosis of retinal disease, chap 2.10. Springer, Tokyo, pp 90–113 Miyake Y (ed) (2006) Complete and incomplete types of CSNB. In: Electrodiagnosis of retinal disease, chap 2.10. Springer, Tokyo, pp 90–113
3.
go back to reference Carr RE et al (1966) Rhodopsin and the electrical activity of the retina in congenital night blindness. Invest Ophthalmol 5(5):497–507PubMed Carr RE et al (1966) Rhodopsin and the electrical activity of the retina in congenital night blindness. Invest Ophthalmol 5(5):497–507PubMed
4.
go back to reference Heckenlively JR, Martin DA, Rosenbaum AL (1983) Loss of electroretinographic oscillatory potentials, optic atrophy, and dysplasia in congenital stationary night blindness. Am J Ophthalmol 96(4):526–534PubMedCrossRef Heckenlively JR, Martin DA, Rosenbaum AL (1983) Loss of electroretinographic oscillatory potentials, optic atrophy, and dysplasia in congenital stationary night blindness. Am J Ophthalmol 96(4):526–534PubMedCrossRef
5.
go back to reference Lachapelle P, Little JM, Polomeno RC (1983) The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 24(4):442–450PubMed Lachapelle P, Little JM, Polomeno RC (1983) The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 24(4):442–450PubMed
6.
go back to reference Quigley M et al (1996) On- and off-responses in the photopic electroretinogram in complete-type congenital stationary night blindness. Doc Ophthalmol 92(3):159–165PubMedCrossRef Quigley M et al (1996) On- and off-responses in the photopic electroretinogram in complete-type congenital stationary night blindness. Doc Ophthalmol 92(3):159–165PubMedCrossRef
7.
go back to reference Schuster A et al (2005) Multifocal oscillatory potentials in CSNB1 and CSNB2 type congenital stationary night blindness. Int J Mol Med 15(1):159–167PubMed Schuster A et al (2005) Multifocal oscillatory potentials in CSNB1 and CSNB2 type congenital stationary night blindness. Int J Mol Med 15(1):159–167PubMed
8.
go back to reference Kondo M et al (2008) Comparison of focal macular cone ERGs in complete-type congenital stationary night blindness and APB-treated monkeys. Vis Res 48(2):273–280PubMedCrossRef Kondo M et al (2008) Comparison of focal macular cone ERGs in complete-type congenital stationary night blindness and APB-treated monkeys. Vis Res 48(2):273–280PubMedCrossRef
9.
go back to reference Tremblay F, Parkinson J (2008) Gradient of deficit in cone responses in the incomplete form of congenital stationary night blindness revealed by multifocal electroretinography. Doc Ophthalmol 116(1):41–47PubMedCrossRef Tremblay F, Parkinson J (2008) Gradient of deficit in cone responses in the incomplete form of congenital stationary night blindness revealed by multifocal electroretinography. Doc Ophthalmol 116(1):41–47PubMedCrossRef
10.
go back to reference Lachapelle P et al (1993) Recording the oscillatory potentials of the electroretinogram with the DTL electrode. Doc Ophthalmol 83(2):119–130PubMedCrossRef Lachapelle P et al (1993) Recording the oscillatory potentials of the electroretinogram with the DTL electrode. Doc Ophthalmol 83(2):119–130PubMedCrossRef
11.
go back to reference McCulloch DL et al (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12PubMedCrossRef McCulloch DL et al (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12PubMedCrossRef
12.
go back to reference Hood DC et al (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124(1):1–13PubMedCrossRef Hood DC et al (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124(1):1–13PubMedCrossRef
13.
go back to reference Hood DC et al (1997) A comparison of the components of the multifocal and full-field ERGs. Vis Neurosci 14(3):533–544PubMedCrossRef Hood DC et al (1997) A comparison of the components of the multifocal and full-field ERGs. Vis Neurosci 14(3):533–544PubMedCrossRef
14.
go back to reference Rangaswamy NV et al (2006) Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47(2):753–767PubMedPubMedCentralCrossRef Rangaswamy NV et al (2006) Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47(2):753–767PubMedPubMedCentralCrossRef
15.
go back to reference Chakor H et al (2005) Evidence suggesting a center to periphery organisation of multifocal ERG oscillatory potentials (mfOPs). Invest Ophthalmol Vis Sci 46:3427 Chakor H et al (2005) Evidence suggesting a center to periphery organisation of multifocal ERG oscillatory potentials (mfOPs). Invest Ophthalmol Vis Sci 46:3427
16.
go back to reference Chakor AD et al (2004) Are multifocal OPs (mfOPs) equivalent to flash OPs (FOPs)? Invest Ophthalmol Vis Sci 46:3427 Chakor AD et al (2004) Are multifocal OPs (mfOPs) equivalent to flash OPs (FOPs)? Invest Ophthalmol Vis Sci 46:3427
17.
go back to reference Wu S, Sutter EE (1995) A topographic study of oscillatory potentials in man. Vis Neurosci 12(6):1013–1025PubMedCrossRef Wu S, Sutter EE (1995) A topographic study of oscillatory potentials in man. Vis Neurosci 12(6):1013–1025PubMedCrossRef
18.
go back to reference Vatcher D et al (2019) Revealing a retinal facilitatory effect with the multifocal ERG. Doc Ophthalmol 138(2):117–124PubMedCrossRef Vatcher D et al (2019) Revealing a retinal facilitatory effect with the multifocal ERG. Doc Ophthalmol 138(2):117–124PubMedCrossRef
19.
go back to reference Zhou W et al (2007) Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method. Vis Res 47(15):2021–2036PubMedCrossRef Zhou W et al (2007) Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method. Vis Res 47(15):2021–2036PubMedCrossRef
20.
go back to reference Gauvin M et al (2015) Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis 15(16):14PubMedCrossRef Gauvin M et al (2015) Functional decomposition of the human ERG based on the discrete wavelet transform. J Vis 15(16):14PubMedCrossRef
21.
22.
go back to reference Kurtenbach A, Jägle H (2008) Multifocal oscillatory potentials of the human retina. In: Tombran-Tink J (ed) Ophthalmology research. Humana Press, Totowa, pp 375–388 Kurtenbach A, Jägle H (2008) Multifocal oscillatory potentials of the human retina. In: Tombran-Tink J (ed) Ophthalmology research. Humana Press, Totowa, pp 375–388
23.
24.
go back to reference Dolan RP, Schiller PH (1989) Evidence for only depolarizing rod bipolar cells in the primate retina. Vis Neurosci 2(5):421–424PubMedCrossRef Dolan RP, Schiller PH (1989) Evidence for only depolarizing rod bipolar cells in the primate retina. Vis Neurosci 2(5):421–424PubMedCrossRef
25.
go back to reference Guite P, Lachapelle P (1990) The effect of 2-amino-4-phosphonobutyric acid on the oscillatory potentials of the electroretinogram. Doc Ophthalmol 75(2):125–133PubMedCrossRef Guite P, Lachapelle P (1990) The effect of 2-amino-4-phosphonobutyric acid on the oscillatory potentials of the electroretinogram. Doc Ophthalmol 75(2):125–133PubMedCrossRef
26.
go back to reference Iwakabe H et al (1997) Impairment of pupillary responses and optokinetic nystagmus in the mGluR6-deficient mouse. Neuropharmacology 36(2):135–143PubMedCrossRef Iwakabe H et al (1997) Impairment of pupillary responses and optokinetic nystagmus in the mGluR6-deficient mouse. Neuropharmacology 36(2):135–143PubMedCrossRef
27.
go back to reference Masu M et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80(5):757–765PubMedCrossRef Masu M et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80(5):757–765PubMedCrossRef
28.
go back to reference Schiller PH (1982) Central connections of the retinal ON and OFF pathways. Nature 297(5867):580–583PubMedCrossRef Schiller PH (1982) Central connections of the retinal ON and OFF pathways. Nature 297(5867):580–583PubMedCrossRef
29.
go back to reference Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211(4478):182–185PubMedCrossRef Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211(4478):182–185PubMedCrossRef
30.
go back to reference Takao M et al (2000) Impaired behavioral suppression by light in metabotropic glutamate receptor subtype 6-deficient mice. Neuroscience 97(4):779–787PubMedCrossRef Takao M et al (2000) Impaired behavioral suppression by light in metabotropic glutamate receptor subtype 6-deficient mice. Neuroscience 97(4):779–787PubMedCrossRef
31.
go back to reference Nelson R, Kolb H (2003) ON and OFF pathways in the vertebrate retina and visual system. In: Chalupa LM (ed) The visual neurosciences. MIT Press, Cambridge, pp 260–278 Nelson R, Kolb H (2003) ON and OFF pathways in the vertebrate retina and visual system. In: Chalupa LM (ed) The visual neurosciences. MIT Press, Cambridge, pp 260–278
32.
go back to reference Wassle H et al (1989) Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341(6243):643–646PubMedCrossRef Wassle H et al (1989) Cortical magnification factor and the ganglion cell density of the primate retina. Nature 341(6243):643–646PubMedCrossRef
Metadata
Title
Ring analysis of multifocal oscillatory potentials (mfOPs) in cCSNB suggests near-normal ON–OFF pathways at the fovea only
Authors
Allison L. Dorfman
Mathieu Gauvin
Dylan Vatcher
John M. Little
Robert C. Polomeno
Pierre Lachapelle
Publication date
01-10-2020
Publisher
Springer Berlin Heidelberg
Keyword
Night-Blindness
Published in
Documenta Ophthalmologica / Issue 2/2020
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-020-09755-2

Other articles of this Issue 2/2020

Documenta Ophthalmologica 2/2020 Go to the issue