Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Research

NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma

Authors: Hui Wang, Jian-Qing Pan, Lun Luo, Xin-jie Ning, Zhuo-Peng Ye, Zhe Yu, Wen-Sheng Li

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Background

Inflammatory cytokines and transforming growth factor-β (TGF-β) are mutually inhibitory. However, hyperactivation of nuclear factor-κB (NF-κB) and TGF-β signaling both emerge in glioblastoma. Here, we report microRNA-148a (miR-148a) overexpression in glioblastoma and that miR-148a directly suppressed Quaking (QKI), a negative regulator of TGF-β signaling.

Methods

We determined NF-κB and TGF-β/Smad signaling activity using pNF-κB-luc, pSMAD-luc, and control plasmids. The association between an RNA-induced silencing complex and QKI, mitogen-inducible gene 6 (MIG6), S-phase kinase–associated protein 1 (SKP1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was tested with microribonucleoprotein immunoprecipitation and real-time PCR. Xenograft tumors were established in the brains of nude mice.

Results

QKI suppression induced an aggressive phenotype of glioblastoma cells both in vitro and in vivo. Interestingly, we found that NF-κB induced miR-148a expression, leading to enhanced-strength and prolonged-duration TGF-β/Smad signaling. Notably, these findings were consistent with the significant correlation between miR-148a levels with NF-κB hyperactivation and activated TGF-β/Smad signaling in a cohort of human glioblastoma specimens.

Conclusions

These findings uncover a plausible mechanism for NF-κB–sustained TGF-β/Smad activation via miR-148a in glioblastoma, and may suggest a new target for clinical intervention in human cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kotliarova S, Fine HA: SnapShot: glioblastoma multiforme. Cancer Cell 2012,21(710–710):e711. Kotliarova S, Fine HA: SnapShot: glioblastoma multiforme. Cancer Cell 2012,21(710–710):e711.
2.
go back to reference Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med 2008, 359:492–507. 10.1056/NEJMra0708126CrossRefPubMed Wen PY, Kesari S: Malignant gliomas in adults. N Engl J Med 2008, 359:492–507. 10.1056/NEJMra0708126CrossRefPubMed
3.
go back to reference Johnson DR, Leeper HE, Uhm JH: Glioblastoma survival in the United States improved after Food and Drug Administration approval of bevacizumab: a population-based analysis. Cancer 2013, 119:3489–3495.CrossRefPubMed Johnson DR, Leeper HE, Uhm JH: Glioblastoma survival in the United States improved after Food and Drug Administration approval of bevacizumab: a population-based analysis. Cancer 2013, 119:3489–3495.CrossRefPubMed
4.
go back to reference Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al.: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001, 95:190–198. 10.3171/jns.2001.95.2.0190CrossRefPubMed Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al.: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 2001, 95:190–198. 10.3171/jns.2001.95.2.0190CrossRefPubMed
5.
go back to reference Markowitz SD, Roberts AB: Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 1996, 7:93–102. 10.1016/1359-6101(96)00001-9CrossRefPubMed Markowitz SD, Roberts AB: Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 1996, 7:93–102. 10.1016/1359-6101(96)00001-9CrossRefPubMed
6.
7.
go back to reference Akhurst RJ, Balmain A: Genetic events and the role of TGF beta in epithelial tumour progression. J Pathol 1999, 187:82–90. 10.1002/(SICI)1096-9896(199901)187:1<82::AID-PATH248>3.0.CO;2-8CrossRefPubMed Akhurst RJ, Balmain A: Genetic events and the role of TGF beta in epithelial tumour progression. J Pathol 1999, 187:82–90. 10.1002/(SICI)1096-9896(199901)187:1<82::AID-PATH248>3.0.CO;2-8CrossRefPubMed
8.
go back to reference Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003, 3:807–821. 10.1038/nrc1208CrossRefPubMed Siegel PM, Massague J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003, 3:807–821. 10.1038/nrc1208CrossRefPubMed
9.
go back to reference Pardali K, Moustakas A: Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 2007, 1775:21–62.PubMed Pardali K, Moustakas A: Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 2007, 1775:21–62.PubMed
10.
go back to reference Bierie B, Moses HL: TGF-beta and cancer. Cytokine Growth Factor Rev 2006, 17:29–40. 10.1016/j.cytogfr.2005.09.006CrossRefPubMed Bierie B, Moses HL: TGF-beta and cancer. Cytokine Growth Factor Rev 2006, 17:29–40. 10.1016/j.cytogfr.2005.09.006CrossRefPubMed
11.
go back to reference Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007, 21:2683–2710. 10.1101/gad.1596707CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al.: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007, 21:2683–2710. 10.1101/gad.1596707CrossRefPubMed
12.
go back to reference Seoane J, Le HV, Shen L, Anderson SA, Massague J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117:211–223. 10.1016/S0092-8674(04)00298-3CrossRefPubMed Seoane J, Le HV, Shen L, Anderson SA, Massague J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004, 117:211–223. 10.1016/S0092-8674(04)00298-3CrossRefPubMed
13.
go back to reference Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, et al.: High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007, 11:147–160. 10.1016/j.ccr.2006.11.023CrossRefPubMed Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, et al.: High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007, 11:147–160. 10.1016/j.ccr.2006.11.023CrossRefPubMed
14.
go back to reference Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K: Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009, 5:504–514. 10.1016/j.stem.2009.08.018CrossRefPubMed Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K: Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009, 5:504–514. 10.1016/j.stem.2009.08.018CrossRefPubMed
15.
go back to reference Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al.: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 2009, 15:315–327. 10.1016/j.ccr.2009.02.011CrossRefPubMed Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al.: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 2009, 15:315–327. 10.1016/j.ccr.2009.02.011CrossRefPubMed
16.
go back to reference Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, et al.: Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 2007, 8:504–513. 10.1038/ni1451CrossRefPubMed Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, et al.: Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 2007, 8:504–513. 10.1038/ni1451CrossRefPubMed
17.
go back to reference Lee YS, Kim JH, Kim ST, Kwon JY, Hong S, Kim SJ, et al.: Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem Biophys Res Commun 2010, 393:836–843. 10.1016/j.bbrc.2010.02.094CrossRefPubMed Lee YS, Kim JH, Kim ST, Kwon JY, Hong S, Kim SJ, et al.: Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem Biophys Res Commun 2010, 393:836–843. 10.1016/j.bbrc.2010.02.094CrossRefPubMed
18.
go back to reference Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, et al.: TGF-beta induces miR-182 to sustain NF-kappaB activation in glioma subsets. J Clin Invest 2012, 122:3563–3578. 10.1172/JCI62339CrossRefPubMedCentralPubMed Song L, Liu L, Wu Z, Li Y, Ying Z, Lin C, et al.: TGF-beta induces miR-182 to sustain NF-kappaB activation in glioma subsets. J Clin Invest 2012, 122:3563–3578. 10.1172/JCI62339CrossRefPubMedCentralPubMed
19.
go back to reference Vernet C, Artzt K: STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 1997, 13:479–484. 10.1016/S0168-9525(97)01269-9CrossRefPubMed Vernet C, Artzt K: STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 1997, 13:479–484. 10.1016/S0168-9525(97)01269-9CrossRefPubMed
20.
go back to reference Chen T, Richard S: Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol Cell Biol 1998, 18:4863–4871.PubMedCentralPubMed Chen T, Richard S: Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol Cell Biol 1998, 18:4863–4871.PubMedCentralPubMed
21.
go back to reference Wu J, Zhou L, Tonissen K, Tee R, Artzt K: The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm. J Biol Chem 1999, 274:29202–29210. 10.1074/jbc.274.41.29202CrossRefPubMed Wu J, Zhou L, Tonissen K, Tee R, Artzt K: The quaking I-5 protein (QKI-5) has a novel nuclear localization signal and shuttles between the nucleus and the cytoplasm. J Biol Chem 1999, 274:29202–29210. 10.1074/jbc.274.41.29202CrossRefPubMed
22.
go back to reference Aberg K, Saetre P, Jareborg N, Jazin E: Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci U S A 2006, 103:7482–7487. 10.1073/pnas.0601213103CrossRefPubMedCentralPubMed Aberg K, Saetre P, Jareborg N, Jazin E: Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci U S A 2006, 103:7482–7487. 10.1073/pnas.0601213103CrossRefPubMedCentralPubMed
23.
go back to reference Haroutunian V, Katsel P, Dracheva S, Davis KL: The human homolog of the QKI gene affected in the severe dysmyelination "quaking" mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry 2006, 163:1834–1837. 10.1176/ajp.2006.163.10.1834CrossRefPubMed Haroutunian V, Katsel P, Dracheva S, Davis KL: The human homolog of the QKI gene affected in the severe dysmyelination "quaking" mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry 2006, 163:1834–1837. 10.1176/ajp.2006.163.10.1834CrossRefPubMed
24.
go back to reference Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al.: Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 2003, 100:5956–5961. 10.1073/pnas.0931262100CrossRefPubMedCentralPubMed Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al.: Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 2003, 100:5956–5961. 10.1073/pnas.0931262100CrossRefPubMedCentralPubMed
25.
go back to reference Smith DI, Zhu Y, McAvoy S, Kuhn R: Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 2006, 232:48–57. 10.1016/j.canlet.2005.06.049CrossRefPubMed Smith DI, Zhu Y, McAvoy S, Kuhn R: Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 2006, 232:48–57. 10.1016/j.canlet.2005.06.049CrossRefPubMed
26.
go back to reference Mulholland PJ, Fiegler H, Mazzanti C, Gorman P, Sasieni P, Adams J, et al.: Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle 2006, 5:783–791. 10.4161/cc.5.7.2631CrossRefPubMed Mulholland PJ, Fiegler H, Mazzanti C, Gorman P, Sasieni P, Adams J, et al.: Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle 2006, 5:783–791. 10.4161/cc.5.7.2631CrossRefPubMed
27.
go back to reference Ichimura K, Mungall AJ, Fiegler H, Pearson DM, Dunham I, Carter NP, et al.: Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array-CGH. Oncogene 2006, 25:1261–1271. 10.1038/sj.onc.1209156CrossRefPubMedCentralPubMed Ichimura K, Mungall AJ, Fiegler H, Pearson DM, Dunham I, Carter NP, et al.: Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array-CGH. Oncogene 2006, 25:1261–1271. 10.1038/sj.onc.1209156CrossRefPubMedCentralPubMed
28.
go back to reference Chen AJ, Paik JH, Zhang H, Shukla SA, Mortensen R, Hu J, et al.: STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA. Genes Dev 2012, 26:1459–1472. 10.1101/gad.189001.112CrossRefPubMedCentralPubMed Chen AJ, Paik JH, Zhang H, Shukla SA, Mortensen R, Hu J, et al.: STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA. Genes Dev 2012, 26:1459–1472. 10.1101/gad.189001.112CrossRefPubMedCentralPubMed
30.
go back to reference Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, et al.: Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 1999, 9:469–479. 10.1111/j.1750-3639.1999.tb00536.xCrossRefPubMed Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, et al.: Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 1999, 9:469–479. 10.1111/j.1750-3639.1999.tb00536.xCrossRefPubMed
31.
go back to reference Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al.: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009, 137:1032–1046. 10.1016/j.cell.2009.03.047CrossRefPubMedCentralPubMed Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al.: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009, 137:1032–1046. 10.1016/j.cell.2009.03.047CrossRefPubMedCentralPubMed
32.
go back to reference Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al.: Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 2011, 29:443–448. 10.1038/nbt.1862CrossRefPubMedCentralPubMed Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al.: Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 2011, 29:443–448. 10.1038/nbt.1862CrossRefPubMedCentralPubMed
33.
go back to reference Wang Y, Vogel G, Yu Z, Richard S: The QKI-5 and QKI-6 RNA binding proteins regulate the expression of microRNA 7 in glial cells. Mol Cell Biol 2013, 33:1233–1243. 10.1128/MCB.01604-12CrossRefPubMedCentralPubMed Wang Y, Vogel G, Yu Z, Richard S: The QKI-5 and QKI-6 RNA binding proteins regulate the expression of microRNA 7 in glial cells. Mol Cell Biol 2013, 33:1233–1243. 10.1128/MCB.01604-12CrossRefPubMedCentralPubMed
34.
go back to reference Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D, et al.: MicroRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 2014, 74:1541–1553. 10.1158/0008-5472.CAN-13-1449CrossRefPubMedCentralPubMed Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D, et al.: MicroRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 2014, 74:1541–1553. 10.1158/0008-5472.CAN-13-1449CrossRefPubMedCentralPubMed
35.
go back to reference Piek E, Heldin CH, Ten Dijke P: Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999, 13:2105–2124.PubMed Piek E, Heldin CH, Ten Dijke P: Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999, 13:2105–2124.PubMed
36.
go back to reference Massague J, Chen YG: Controlling TGF-beta signaling. Genes Dev 2000, 14:627–644.PubMed Massague J, Chen YG: Controlling TGF-beta signaling. Genes Dev 2000, 14:627–644.PubMed
37.
go back to reference Heldin CH, Miyazono K, ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390:465–471. 10.1038/37284CrossRefPubMed Heldin CH, Miyazono K, ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390:465–471. 10.1038/37284CrossRefPubMed
38.
go back to reference Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, et al.: Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 2001, 12:1431–1443. 10.1091/mbc.12.5.1431CrossRefPubMedCentralPubMed Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K, et al.: Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 2001, 12:1431–1443. 10.1091/mbc.12.5.1431CrossRefPubMedCentralPubMed
39.
go back to reference Lu W, Feng F, Xu J, Lu X, Wang S, Wang L, et al.: QKI impairs self-renewal and tumorigenicity of oral cancer cells via repression of SOX2. Cancer Biol Ther 2014,15(9):1174–84. 10.4161/cbt.29502CrossRefPubMed Lu W, Feng F, Xu J, Lu X, Wang S, Wang L, et al.: QKI impairs self-renewal and tumorigenicity of oral cancer cells via repression of SOX2. Cancer Biol Ther 2014,15(9):1174–84. 10.4161/cbt.29502CrossRefPubMed
40.
go back to reference Zhao Y, Zhang G, Wei M, Lu X, Fu H, Feng F, et al.: The tumor suppressing effects of QKI-5 in prostate cancer: a novel diagnostic and prognostic protein. Cancer Biol Ther 2014, 15:108–118. 10.4161/cbt.26722CrossRefPubMedCentralPubMed Zhao Y, Zhang G, Wei M, Lu X, Fu H, Feng F, et al.: The tumor suppressing effects of QKI-5 in prostate cancer: a novel diagnostic and prognostic protein. Cancer Biol Ther 2014, 15:108–118. 10.4161/cbt.26722CrossRefPubMedCentralPubMed
41.
go back to reference Bian Y, Wang L, Lu H, Yang G, Zhang Z, Fu H, et al.: Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis. Biochem Biophys Res Commun 2012, 422:187–193. 10.1016/j.bbrc.2012.04.138CrossRefPubMed Bian Y, Wang L, Lu H, Yang G, Zhang Z, Fu H, et al.: Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis. Biochem Biophys Res Commun 2012, 422:187–193. 10.1016/j.bbrc.2012.04.138CrossRefPubMed
42.
go back to reference Ji S, Ye G, Zhang J, Wang L, Wang T, Wang Z, et al.: miR-574–5p negatively regulates Qki6/7 to impact beta-catenin/Wnt signalling and the development of colorectal cancer. Gut 2013, 62:716–726. 10.1136/gutjnl-2011-301083CrossRefPubMedCentralPubMed Ji S, Ye G, Zhang J, Wang L, Wang T, Wang Z, et al.: miR-574–5p negatively regulates Qki6/7 to impact beta-catenin/Wnt signalling and the development of colorectal cancer. Gut 2013, 62:716–726. 10.1136/gutjnl-2011-301083CrossRefPubMedCentralPubMed
43.
go back to reference Galardi S, Mercatelli N, Farace MG, Ciafre SA: NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 2011, 39:3892–3902. 10.1093/nar/gkr006CrossRefPubMedCentralPubMed Galardi S, Mercatelli N, Farace MG, Ciafre SA: NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 2011, 39:3892–3902. 10.1093/nar/gkr006CrossRefPubMedCentralPubMed
44.
go back to reference Song L, Lin C, Gong H, Wang C, Liu L, Wu J, et al.: miR-486 sustains NF-kappaB activity by disrupting multiple NF-kappaB-negative feedback loops. Cell Res 2013, 23:274–289. 10.1038/cr.2012.174CrossRefPubMedCentralPubMed Song L, Lin C, Gong H, Wang C, Liu L, Wu J, et al.: miR-486 sustains NF-kappaB activity by disrupting multiple NF-kappaB-negative feedback loops. Cell Res 2013, 23:274–289. 10.1038/cr.2012.174CrossRefPubMedCentralPubMed
45.
go back to reference Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, et al.: Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer 2012, 12:406. 10.1186/1471-2407-12-406CrossRefPubMedCentralPubMed Jiang L, Wu J, Yang Y, Liu L, Song L, Li J, et al.: Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer 2012, 12:406. 10.1186/1471-2407-12-406CrossRefPubMedCentralPubMed
46.
go back to reference Liang F, Zhang S, Wang B, Qiu J, Wang Y: Overexpression of integrin-linked kinase (ILK) promotes glioma cell invasion and migration and down-regulates E-cadherin via the NF-kappaB pathway. J Mol Histol 2014, 45:141–151. 10.1007/s10735-013-9540-5CrossRefPubMed Liang F, Zhang S, Wang B, Qiu J, Wang Y: Overexpression of integrin-linked kinase (ILK) promotes glioma cell invasion and migration and down-regulates E-cadherin via the NF-kappaB pathway. J Mol Histol 2014, 45:141–151. 10.1007/s10735-013-9540-5CrossRefPubMed
47.
go back to reference Holland EC: Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001, 2:120–129. 10.1038/35052535CrossRefPubMed Holland EC: Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001, 2:120–129. 10.1038/35052535CrossRefPubMed
48.
go back to reference Zhu Y, Parada LF: The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002, 2:616–626. 10.1038/nrc866CrossRefPubMed Zhu Y, Parada LF: The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2002, 2:616–626. 10.1038/nrc866CrossRefPubMed
49.
go back to reference Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA: TGF-beta as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 2013, 85:478–485. 10.1016/j.bcp.2012.11.005CrossRefPubMed Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA: TGF-beta as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 2013, 85:478–485. 10.1016/j.bcp.2012.11.005CrossRefPubMed
50.
go back to reference Seoane J: The TGFBeta pathway as a therapeutic target in cancer. Clin Transl Oncol 2008, 10:14–19. 10.1007/s12094-008-0148-2CrossRefPubMed Seoane J: The TGFBeta pathway as a therapeutic target in cancer. Clin Transl Oncol 2008, 10:14–19. 10.1007/s12094-008-0148-2CrossRefPubMed
51.
go back to reference Yingling JM, Blanchard KL, Sawyer JS: Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004, 3:1011–1022. 10.1038/nrd1580CrossRefPubMed Yingling JM, Blanchard KL, Sawyer JS: Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004, 3:1011–1022. 10.1038/nrd1580CrossRefPubMed
52.
go back to reference Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY, et al.: Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res 2008, 14:3319–3326. 10.1158/1078-0432.CCR-07-4054CrossRefPubMed Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY, et al.: Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res 2008, 14:3319–3326. 10.1158/1078-0432.CCR-07-4054CrossRefPubMed
Metadata
Title
NF-κB induces miR-148a to sustain TGF-β/Smad signaling activation in glioblastoma
Authors
Hui Wang
Jian-Qing Pan
Lun Luo
Xin-jie Ning
Zhuo-Peng Ye
Zhe Yu
Wen-Sheng Li
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-14-2

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine