Skip to main content
Top
Published in: Clinical and Translational Oncology 1/2013

01-01-2013 | Educational Series – Blue Series

Next-generation sequencing reveals the secrets of the chronic lymphocytic leukemia genome

Authors: Andrew J. Ramsay, Alejandra Martínez-Trillos, Pedro Jares, David Rodríguez, Agnieszka Kwarciak, Víctor Quesada

Published in: Clinical and Translational Oncology | Issue 1/2013

Login to get access

Abstract

The study of the detailed molecular history of cancer development is one of the most promising techniques to understand and fight this diverse and prevalent disease. Unfortunately, this history is as diverse as cancer itself. Therefore, even with next-generation sequencing techniques, it is not easy to distinguish significant (driver) from random (passenger) events. The International Cancer Genome Consortium (ICGC) was formed to solve this fundamental issue by coordinating the sequencing of samples from 50 different cancer types and/or sub-types that are of clinical and societal importance. The contribution of Spain in this consortium has been focused on chronic lymphocytic leukemia (CLL). This approach has unveiled new and unexpected events in the development of CLL. In this review, we introduce the approaches utilized by the consortium for the study of the CLL genome and discuss the recent results and future perspectives of this work.
Literature
1.
go back to reference Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 5:646–674CrossRef Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 5:646–674CrossRef
2.
go back to reference Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 7239:719–724CrossRef Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 7239:719–724CrossRef
3.
go back to reference Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 7132:153–158CrossRef Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 7132:153–158CrossRef
4.
go back to reference Bozic I, Antal T, Ohtsuki H et al (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 43:18545–18550CrossRef Bozic I, Antal T, Ohtsuki H et al (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 43:18545–18550CrossRef
5.
go back to reference Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 7291:993–998CrossRef Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 7291:993–998CrossRef
6.
go back to reference Zhao J, Grant SF (2011) Advances in whole genome sequencing technology. Curr Pharm Biotechnol 2:293–305CrossRef Zhao J, Grant SF (2011) Advances in whole genome sequencing technology. Curr Pharm Biotechnol 2:293–305CrossRef
7.
go back to reference Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 10:685–696CrossRef Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 10:685–696CrossRef
8.
go back to reference Ley TJ, Mardis ER, Ding L et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 7218:66–72CrossRef Ley TJ, Mardis ER, Ding L et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 7218:66–72CrossRef
9.
go back to reference Campbell PJ, Stephens PJ, Pleasance ED et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 6:722–729CrossRef Campbell PJ, Stephens PJ, Pleasance ED et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 6:722–729CrossRef
10.
go back to reference Chapman MA, Lawrence MS, Keats JJ et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 7339:467–472CrossRef Chapman MA, Lawrence MS, Keats JJ et al (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 7339:467–472CrossRef
11.
go back to reference Stephens PJ, McBride DJ, Lin ML et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 7276:1005–1010CrossRef Stephens PJ, McBride DJ, Lin ML et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 7276:1005–1010CrossRef
12.
go back to reference Pleasance ED, Cheetham RK, Stephens PJ et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 7278:191–196CrossRef Pleasance ED, Cheetham RK, Stephens PJ et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 7278:191–196CrossRef
13.
go back to reference Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 7319:1109–1113CrossRef Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 7319:1109–1113CrossRef
14.
go back to reference Totoki Y, Tatsuno K, Yamamoto S et al (2011) High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 5:464–469CrossRef Totoki Y, Tatsuno K, Yamamoto S et al (2011) High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 5:464–469CrossRef
15.
go back to reference Parsons DW, Li M, Zhang X et al (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 6016:435–439CrossRef Parsons DW, Li M, Zhang X et al (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 6016:435–439CrossRef
16.
go back to reference Berger MF, Lawrence MS, Demichelis F et al (2011) The genomic complexity of primary human prostate cancer. Nature 7333:214–220CrossRef Berger MF, Lawrence MS, Demichelis F et al (2011) The genomic complexity of primary human prostate cancer. Nature 7333:214–220CrossRef
17.
go back to reference Welch JS, Westervelt P, Ding L et al (2011) Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 15:1577–1584CrossRef Welch JS, Westervelt P, Ding L et al (2011) Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. JAMA 15:1577–1584CrossRef
18.
go back to reference Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 3:251–253CrossRef Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 3:251–253CrossRef
19.
go back to reference Network CGAR (2011) Integrated genomic analyses of ovarian carcinoma. Nature 7353:609–615 Network CGAR (2011) Integrated genomic analyses of ovarian carcinoma. Nature 7353:609–615
20.
go back to reference Puente XS, Pinyol M, Quesada V et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 7354:101–105CrossRef Puente XS, Pinyol M, Quesada V et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 7354:101–105CrossRef
21.
go back to reference Quesada V, Conde L, Villamor N et al (2012) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 1:47–52 Quesada V, Conde L, Villamor N et al (2012) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 1:47–52
22.
go back to reference Wang L, Lawrence MS, Wan Y et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 26:2497–2506CrossRef Wang L, Lawrence MS, Wan Y et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 26:2497–2506CrossRef
23.
go back to reference Fabbri G, Rasi S, Rossi D et al (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 7:1389–1401CrossRef Fabbri G, Rasi S, Rossi D et al (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 7:1389–1401CrossRef
24.
go back to reference Rozman C, Montserrat E (1995) Chronic lymphocytic leukemia. N Engl J Med 16:1052–1057CrossRef Rozman C, Montserrat E (1995) Chronic lymphocytic leukemia. N Engl J Med 16:1052–1057CrossRef
25.
go back to reference Zenz T, Mertens D, Kuppers R et al (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 1:37–50 Zenz T, Mertens D, Kuppers R et al (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 1:37–50
26.
go back to reference Hamblin TJ, Davis Z, Gardiner A et al (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 6:1848–1854 Hamblin TJ, Davis Z, Gardiner A et al (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 6:1848–1854
27.
go back to reference Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 7308:869–873CrossRef Kan Z, Jaiswal BS, Stinson J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 7308:869–873CrossRef
28.
go back to reference Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 5:347–359CrossRef Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 5:347–359CrossRef
29.
go back to reference Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 5694:269–271CrossRef Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 5694:269–271CrossRef
30.
go back to reference Palomero T, Lim WK, Odom DT et al (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 48:18261–18266CrossRef Palomero T, Lim WK, Odom DT et al (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 48:18261–18266CrossRef
31.
go back to reference Tsimberidou AM, Keating MJ (2006) Richter’s transformation in chronic lymphocytic leukemia. Semin Oncol 2:250–256CrossRef Tsimberidou AM, Keating MJ (2006) Richter’s transformation in chronic lymphocytic leukemia. Semin Oncol 2:250–256CrossRef
32.
go back to reference Kanai M, Hanashiro K, Kim SH et al (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 10:1175–1183CrossRef Kanai M, Hanashiro K, Kim SH et al (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 10:1175–1183CrossRef
33.
go back to reference Wang W, Budhu A, Forgues M et al (2005) Temporal and spatial control of nucleophosmin by the Ran–Crm1 complex in centrosome duplication. Nat Cell Biol 8:823–830CrossRef Wang W, Budhu A, Forgues M et al (2005) Temporal and spatial control of nucleophosmin by the Ran–Crm1 complex in centrosome duplication. Nat Cell Biol 8:823–830CrossRef
35.
go back to reference O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 5:353–364CrossRef O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 5:353–364CrossRef
36.
go back to reference Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 7332:115–119CrossRef Ngo VN, Young RM, Schmitz R et al (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 7332:115–119CrossRef
37.
go back to reference Kroll J, Shi X, Caprioli A et al (2005) The BTB-kelch protein KLHL6 is involved in B-lymphocyte antigen receptor signaling and germinal center formation. Mol Cell Biol 19:8531–8540CrossRef Kroll J, Shi X, Caprioli A et al (2005) The BTB-kelch protein KLHL6 is involved in B-lymphocyte antigen receptor signaling and germinal center formation. Mol Cell Biol 19:8531–8540CrossRef
38.
go back to reference Dohner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 26:1910–1916CrossRef Dohner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 26:1910–1916CrossRef
39.
go back to reference Klein U, Lia M, Crespo M et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 1:28–40CrossRef Klein U, Lia M, Crespo M et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 1:28–40CrossRef
40.
go back to reference Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 24:15524–15529CrossRef Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 24:15524–15529CrossRef
41.
go back to reference Golas MM, Sander B, Will CL et al (2003) Molecular architecture of the multiprotein splicing factor SF3b. Science 5621:980–984CrossRef Golas MM, Sander B, Will CL et al (2003) Molecular architecture of the multiprotein splicing factor SF3b. Science 5621:980–984CrossRef
42.
go back to reference Wu L, Multani AS, He H et al (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 1:49–62CrossRef Wu L, Multani AS, He H et al (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 1:49–62CrossRef
43.
go back to reference Hockemeyer D, Daniels JP, Takai H et al (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 1:63–77CrossRef Hockemeyer D, Daniels JP, Takai H et al (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 1:63–77CrossRef
44.
go back to reference Nagarajan P, Onami TM, Rajagopalan S et al (2009) Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 8:1053–1062CrossRef Nagarajan P, Onami TM, Rajagopalan S et al (2009) Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. Oncogene 8:1053–1062CrossRef
45.
go back to reference Prazeres H, Torres J, Rodrigues F et al (2011) Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 11:1302–1317CrossRef Prazeres H, Torres J, Rodrigues F et al (2011) Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 11:1302–1317CrossRef
46.
go back to reference Quesada V, Ramsay AJ, Lopez-Otin C (2012) Chronic lymphocytic leukemia with SF3B1 mutation. N Engl J Med 26:2530CrossRef Quesada V, Ramsay AJ, Lopez-Otin C (2012) Chronic lymphocytic leukemia with SF3B1 mutation. N Engl J Med 26:2530CrossRef
47.
go back to reference Rossi D, Bruscaggin A, Spina V et al (2011) Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 26:6904–6908CrossRef Rossi D, Bruscaggin A, Spina V et al (2011) Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 26:6904–6908CrossRef
48.
go back to reference Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 7367:64–69CrossRef Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 7367:64–69CrossRef
49.
go back to reference Graubert TA, Shen D, Ding L et al (2012) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 1:53–57 Graubert TA, Shen D, Ding L et al (2012) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 1:53–57
50.
go back to reference Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 15:1384–1395CrossRef Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 15:1384–1395CrossRef
51.
go back to reference David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 21:2343–2364CrossRef David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 21:2343–2364CrossRef
52.
go back to reference Folco EG, Coil KE, Reed R (2011) The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 5:440–444CrossRef Folco EG, Coil KE, Reed R (2011) The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev 5:440–444CrossRef
53.
go back to reference Corrionero A, Minana B, Valcarcel J (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 5:445–459CrossRef Corrionero A, Minana B, Valcarcel J (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 5:445–459CrossRef
54.
go back to reference Chen AA, Marsit CJ, Christensen BC et al (2009) Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis 6:977–981CrossRef Chen AA, Marsit CJ, Christensen BC et al (2009) Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis 6:977–981CrossRef
55.
go back to reference Bulwin GC, Heinemann T, Bugge V et al (2006) TIRC7 inhibits T cell proliferation by modulation of CTLA-4 expression. J Immunol 10:6833–6841 Bulwin GC, Heinemann T, Bugge V et al (2006) TIRC7 inhibits T cell proliferation by modulation of CTLA-4 expression. J Immunol 10:6833–6841
56.
go back to reference Yu B, Zhou X, Li B et al (2011) FOXP1 expression and its clinicopathologic significance in nodal and extranodal diffuse large B-cell lymphoma. Ann Hematol 6:701–708CrossRef Yu B, Zhou X, Li B et al (2011) FOXP1 expression and its clinicopathologic significance in nodal and extranodal diffuse large B-cell lymphoma. Ann Hematol 6:701–708CrossRef
57.
go back to reference Brown PJ, Ashe SL, Leich E et al (2008) Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood 5:2816–2824CrossRef Brown PJ, Ashe SL, Leich E et al (2008) Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood 5:2816–2824CrossRef
58.
go back to reference Garbelli A, Radi M, Falchi F et al (2011) Targeting the human DEAD-box polypeptide 3 (DDX3) RNA helicase as a novel strategy to inhibit viral replication. Curr Med Chem 20:3015–3027CrossRef Garbelli A, Radi M, Falchi F et al (2011) Targeting the human DEAD-box polypeptide 3 (DDX3) RNA helicase as a novel strategy to inhibit viral replication. Curr Med Chem 20:3015–3027CrossRef
59.
go back to reference Yedavalli VS, Neuveut C, Chi YH et al (2004) Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 3:381–392CrossRef Yedavalli VS, Neuveut C, Chi YH et al (2004) Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 3:381–392CrossRef
60.
go back to reference van der Maarel SM, Scholten IH, Huber I et al (1996) Cloning and characterization of DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1. Hum Mol Genet 7:887–897CrossRef van der Maarel SM, Scholten IH, Huber I et al (1996) Cloning and characterization of DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1. Hum Mol Genet 7:887–897CrossRef
61.
go back to reference Xiao S, Nalabolu SR, Aster JC et al (1998) FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 1:84–87CrossRef Xiao S, Nalabolu SR, Aster JC et al (1998) FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat Genet 1:84–87CrossRef
62.
go back to reference Grenard P, Bates MK, Aeschlimann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 35:33066–33078CrossRef Grenard P, Bates MK, Aeschlimann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 35:33066–33078CrossRef
63.
go back to reference Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 6024:1553–1558CrossRef Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 6024:1553–1558CrossRef
64.
go back to reference Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 5767:1544–1546CrossRef Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 5767:1544–1546CrossRef
65.
go back to reference Maheswaran S, Sequist LV, Nagrath S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 4:366–377CrossRef Maheswaran S, Sequist LV, Nagrath S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 4:366–377CrossRef
66.
go back to reference Leary RJ, Kinde I, Diehl F et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 20:20ra14 Leary RJ, Kinde I, Diehl F et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 20:20ra14
Metadata
Title
Next-generation sequencing reveals the secrets of the chronic lymphocytic leukemia genome
Authors
Andrew J. Ramsay
Alejandra Martínez-Trillos
Pedro Jares
David Rodríguez
Agnieszka Kwarciak
Víctor Quesada
Publication date
01-01-2013
Publisher
Springer Milan
Published in
Clinical and Translational Oncology / Issue 1/2013
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-012-0922-z

Other articles of this Issue 1/2013

Clinical and Translational Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine