Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Review

New insights into the synergism of nucleoside analogs with radiotherapy

Authors: Michael W Lee, William B Parker, Bo Xu

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Montgomery JA, Hewson K: Nucleosides of 2-fluoroadenine. J Med Chem 1969,12(3):498-504. 10.1021/jm00303a605PubMed Montgomery JA, Hewson K: Nucleosides of 2-fluoroadenine. J Med Chem 1969,12(3):498-504. 10.1021/jm00303a605PubMed
2.
go back to reference Huang P, Plunkett W: Phosphorolytic cleavage of 2-fluoroadenine from 9-beta-D-arabinofuranosyl-2-fluoroadenine by Escherichia coli. A pathway for 2-fluoro-ATP production. Biochem Pharmacol 1987,36(18):2945-2950. 10.1016/0006-2952(87)90207-3PubMed Huang P, Plunkett W: Phosphorolytic cleavage of 2-fluoroadenine from 9-beta-D-arabinofuranosyl-2-fluoroadenine by Escherichia coli. A pathway for 2-fluoro-ATP production. Biochem Pharmacol 1987,36(18):2945-2950. 10.1016/0006-2952(87)90207-3PubMed
3.
go back to reference Pugmire MJ, Ealick SE: Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem J 2002,361(Pt 1):1-25.PubMedPubMedCentral Pugmire MJ, Ealick SE: Structural analyses reveal two distinct families of nucleoside phosphorylases. Biochem J 2002,361(Pt 1):1-25.PubMedPubMedCentral
4.
go back to reference Brockman RW, Schabel FM Jr, Montgomery JA: Biologic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-beta-D-arabinofuranosyladenine. Biochem Pharmacol 1977,26(22):2193-2196. 10.1016/0006-2952(77)90275-1PubMed Brockman RW, Schabel FM Jr, Montgomery JA: Biologic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-beta-D-arabinofuranosyladenine. Biochem Pharmacol 1977,26(22):2193-2196. 10.1016/0006-2952(77)90275-1PubMed
5.
go back to reference Danhauser L, et al.: 9-beta-D-arabinofuranosyl-2-fluoroadenine 5'-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia and lymphoma. Cancer Chemother Pharmacol 1986,18(2):145-152.PubMed Danhauser L, et al.: 9-beta-D-arabinofuranosyl-2-fluoroadenine 5'-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia and lymphoma. Cancer Chemother Pharmacol 1986,18(2):145-152.PubMed
6.
go back to reference Gandhi V, Plunkett W: Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 2002,41(2):93-103. 10.2165/00003088-200241020-00002PubMed Gandhi V, Plunkett W: Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 2002,41(2):93-103. 10.2165/00003088-200241020-00002PubMed
7.
go back to reference Shewach DS, Reynolds KK, Hertel L: Nucleotide specificity of human deoxycytidine kinase. Mol Pharmacol 1992,42(3):518-524.PubMed Shewach DS, Reynolds KK, Hertel L: Nucleotide specificity of human deoxycytidine kinase. Mol Pharmacol 1992,42(3):518-524.PubMed
8.
go back to reference Krenitsky TA, et al.: Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem 1976,251(13):4055-4061.PubMed Krenitsky TA, et al.: Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem 1976,251(13):4055-4061.PubMed
9.
go back to reference Sabini E, et al.: Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat Struct Biol 2003,10(7):513-519. 10.1038/nsb942PubMed Sabini E, et al.: Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat Struct Biol 2003,10(7):513-519. 10.1038/nsb942PubMed
10.
go back to reference Arner ES, Eriksson S: Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995,67(2):155-186. 10.1016/0163-7258(95)00015-9PubMed Arner ES, Eriksson S: Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995,67(2):155-186. 10.1016/0163-7258(95)00015-9PubMed
11.
go back to reference Grever M, et al.: A comprehensive phase I and II clinical investigation of fludarabine phosphate. Semin Oncol 1990,17(5 Suppl 8):39-48.PubMed Grever M, et al.: A comprehensive phase I and II clinical investigation of fludarabine phosphate. Semin Oncol 1990,17(5 Suppl 8):39-48.PubMed
12.
go back to reference Nitsche M, et al.: Fludarabine combined with radiotherapy in patients with locally advanced NSCLC lung carcinoma: a phase I study. J Cancer Res Clin Oncol 2012,138(7):1113-1120. 10.1007/s00432-012-1185-3PubMedPubMedCentral Nitsche M, et al.: Fludarabine combined with radiotherapy in patients with locally advanced NSCLC lung carcinoma: a phase I study. J Cancer Res Clin Oncol 2012,138(7):1113-1120. 10.1007/s00432-012-1185-3PubMedPubMedCentral
13.
go back to reference Consoli U, et al.: Differential induction of apoptosis by fludarabine monophosphate in leukemic B and normal T cells in chronic lymphocytic leukemia. Blood 1998,91(5):1742-1748.PubMed Consoli U, et al.: Differential induction of apoptosis by fludarabine monophosphate in leukemic B and normal T cells in chronic lymphocytic leukemia. Blood 1998,91(5):1742-1748.PubMed
14.
go back to reference Sandoval A, Consoli U, Plunkett W: Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin Cancer Res 1996,2(10):1731-1741.PubMed Sandoval A, Consoli U, Plunkett W: Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin Cancer Res 1996,2(10):1731-1741.PubMed
15.
go back to reference Piro LD, et al.: Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine. N Engl J Med 1990,322(16):1117-1121. 10.1056/NEJM199004193221605PubMed Piro LD, et al.: Lasting remissions in hairy-cell leukemia induced by a single infusion of 2-chlorodeoxyadenosine. N Engl J Med 1990,322(16):1117-1121. 10.1056/NEJM199004193221605PubMed
16.
go back to reference Santana VM, et al.: Complete hematologic remissions induced by 2-chlorodeoxyadenosine in children with newly diagnosed acute myeloid leukemia. Blood 1994,84(4):1237-1242.PubMed Santana VM, et al.: Complete hematologic remissions induced by 2-chlorodeoxyadenosine in children with newly diagnosed acute myeloid leukemia. Blood 1994,84(4):1237-1242.PubMed
17.
go back to reference Saven A, et al.: 2-Chlorodeoxyadenosine activity in patients with untreated, indolent non-Hodgkin's lymphoma. Blood 1995,86(5):1710-1716.PubMed Saven A, et al.: 2-Chlorodeoxyadenosine activity in patients with untreated, indolent non-Hodgkin's lymphoma. Blood 1995,86(5):1710-1716.PubMed
18.
go back to reference Saven A, Piro LD: 2-Chlorodeoxyadenosine: a new nucleoside agent effective in the treatment of lymphoid malignancies. Leuk Lymphoma 1993,10(Suppl):43-49.PubMed Saven A, Piro LD: 2-Chlorodeoxyadenosine: a new nucleoside agent effective in the treatment of lymphoid malignancies. Leuk Lymphoma 1993,10(Suppl):43-49.PubMed
19.
go back to reference Cass CE, Au-Yeung TH: Enhancement of 9-beta-d-arabinofuranosyladenine cytotoxicity to mouse leukemia L1210 in vitro by 2'-deoxycoformycin. Cancer Res 1976,36(4):1486-1491.PubMed Cass CE, Au-Yeung TH: Enhancement of 9-beta-d-arabinofuranosyladenine cytotoxicity to mouse leukemia L1210 in vitro by 2'-deoxycoformycin. Cancer Res 1976,36(4):1486-1491.PubMed
20.
go back to reference Carson DA, et al.: Biochemical basis for the enhanced toxicity of deoxyribonucleosides toward malignant human T cell lines. Proc Natl Acad Sci U S A 1979,76(5):2430-2433. 10.1073/pnas.76.5.2430PubMedPubMedCentral Carson DA, et al.: Biochemical basis for the enhanced toxicity of deoxyribonucleosides toward malignant human T cell lines. Proc Natl Acad Sci U S A 1979,76(5):2430-2433. 10.1073/pnas.76.5.2430PubMedPubMedCentral
21.
go back to reference Lotfi K, Juliusson G, Albertioni F: Pharmacological basis for cladribine resistance. Leuk Lymphoma 2003,44(10):1705-1712. 10.1080/1042819031000099698PubMed Lotfi K, Juliusson G, Albertioni F: Pharmacological basis for cladribine resistance. Leuk Lymphoma 2003,44(10):1705-1712. 10.1080/1042819031000099698PubMed
22.
go back to reference King KM, et al.: A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol Pharmacol 2006,69(1):346-353.PubMed King KM, et al.: A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol Pharmacol 2006,69(1):346-353.PubMed
23.
go back to reference Leung GP, Tse CM: The role of mitochondrial and plasma membrane nucleoside transporters in drug toxicity. Expert Opin Drug Metab Toxicol 2007,3(5):705-718. 10.1517/17425255.3.5.705PubMed Leung GP, Tse CM: The role of mitochondrial and plasma membrane nucleoside transporters in drug toxicity. Expert Opin Drug Metab Toxicol 2007,3(5):705-718. 10.1517/17425255.3.5.705PubMed
24.
go back to reference Mackey JR, et al.: Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998,58(19):4349-4357.PubMed Mackey JR, et al.: Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 1998,58(19):4349-4357.PubMed
25.
go back to reference Wang L, et al.: Substrate specificity of mitochondrial 2'-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine. J Biol Chem 1993,268(30):22847-22852.PubMed Wang L, et al.: Substrate specificity of mitochondrial 2'-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine. J Biol Chem 1993,268(30):22847-22852.PubMed
26.
go back to reference Hatzis P, et al.: The intracellular localization of deoxycytidine kinase. J Biol Chem 1998,273(46):30239-30243. 10.1074/jbc.273.46.30239PubMed Hatzis P, et al.: The intracellular localization of deoxycytidine kinase. J Biol Chem 1998,273(46):30239-30243. 10.1074/jbc.273.46.30239PubMed
27.
go back to reference Johansson M, Brismar S, Karlsson A: Human deoxycytidine kinase is located in the cell nucleus. Proc Natl Acad Sci U S A 1997,94(22):11941-11945. 10.1073/pnas.94.22.11941PubMedPubMedCentral Johansson M, Brismar S, Karlsson A: Human deoxycytidine kinase is located in the cell nucleus. Proc Natl Acad Sci U S A 1997,94(22):11941-11945. 10.1073/pnas.94.22.11941PubMedPubMedCentral
28.
go back to reference Kawasaki H, et al.: Relationship of deoxycytidine kinase and cytoplasmic 5'-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood 1993,81(3):597-601.PubMed Kawasaki H, et al.: Relationship of deoxycytidine kinase and cytoplasmic 5'-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood 1993,81(3):597-601.PubMed
29.
go back to reference Hentosh P, Koob R, Blakley RL: Incorporation of 2-halogeno-2'-deoxyadenosine 5-triphosphates into DNA during replication by human polymerases alpha and beta. J Biol Chem 1990,265(7):4033-4040.PubMed Hentosh P, Koob R, Blakley RL: Incorporation of 2-halogeno-2'-deoxyadenosine 5-triphosphates into DNA during replication by human polymerases alpha and beta. J Biol Chem 1990,265(7):4033-4040.PubMed
30.
go back to reference Parker WB, et al.: Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase. Mol Pharmacol 1988,34(4):485-491.PubMed Parker WB, et al.: Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase, and ribonucleotide reductase. Mol Pharmacol 1988,34(4):485-491.PubMed
31.
go back to reference Pettitt AR, Sherrington PD, Cawley JC: Role of poly(ADP-ribosyl)ation in the killing of chronic lymphocytic leukemia cells by purine analogues. Cancer Res 2000,60(15):4187-4193.PubMed Pettitt AR, Sherrington PD, Cawley JC: Role of poly(ADP-ribosyl)ation in the killing of chronic lymphocytic leukemia cells by purine analogues. Cancer Res 2000,60(15):4187-4193.PubMed
32.
go back to reference Robertson LE, et al.: Induction of apoptotic cell death in chronic lymphocytic leukemia by 2-chloro-2'-deoxyadenosine and 9-beta-D-arabinosyl-2-fluoroadenine. Blood 1993,81(1):143-150.PubMed Robertson LE, et al.: Induction of apoptotic cell death in chronic lymphocytic leukemia by 2-chloro-2'-deoxyadenosine and 9-beta-D-arabinosyl-2-fluoroadenine. Blood 1993,81(1):143-150.PubMed
33.
go back to reference Seto S, et al.: Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest 1985,75(2):377-383. 10.1172/JCI111710PubMedPubMedCentral Seto S, et al.: Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest 1985,75(2):377-383. 10.1172/JCI111710PubMedPubMedCentral
34.
go back to reference Pettitt AR, et al.: Purine analogues kill resting lymphocytes by p53-dependent and -independent mechanisms. Br J Haematol 1999,105(4):986-988. 10.1046/j.1365-2141.1999.01448.xPubMed Pettitt AR, et al.: Purine analogues kill resting lymphocytes by p53-dependent and -independent mechanisms. Br J Haematol 1999,105(4):986-988. 10.1046/j.1365-2141.1999.01448.xPubMed
35.
go back to reference Griffig J, Koob R, Blakley RL: Mechanisms of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells. Cancer Res 1989,49(24 Pt 1):6923-6928.PubMed Griffig J, Koob R, Blakley RL: Mechanisms of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells. Cancer Res 1989,49(24 Pt 1):6923-6928.PubMed
36.
go back to reference Fabianowska-Majewska K, et al.: The influence of 2-chloro-2'-deoxyadenosine on metabolism of deoxyadenosine in human primary CNS lymphoma. Biochem Pharmacol 1995,50(9):1379-1383. 10.1016/0006-2952(95)02018-7PubMed Fabianowska-Majewska K, et al.: The influence of 2-chloro-2'-deoxyadenosine on metabolism of deoxyadenosine in human primary CNS lymphoma. Biochem Pharmacol 1995,50(9):1379-1383. 10.1016/0006-2952(95)02018-7PubMed
37.
go back to reference Genini D, et al.: Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 2000,96(10):3537-3543.PubMed Genini D, et al.: Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood 2000,96(10):3537-3543.PubMed
38.
go back to reference Hentosh P, Tibudan M: 2-Chloro-2'-deoxyadenosine, an antileukemic drug, has an early effect on cellular mitochondrial function. Mol Pharmacol 1997,51(4):613-619.PubMed Hentosh P, Tibudan M: 2-Chloro-2'-deoxyadenosine, an antileukemic drug, has an early effect on cellular mitochondrial function. Mol Pharmacol 1997,51(4):613-619.PubMed
39.
go back to reference Cheson BD: Perspectives on purine analogues. Hematol Cell Ther 1996,38(Suppl 2):S109-S116.PubMed Cheson BD: Perspectives on purine analogues. Hematol Cell Ther 1996,38(Suppl 2):S109-S116.PubMed
40.
go back to reference Saven A, Piro LD: 2-Chlorodeoxyadenosine: a newer purine analog active in the treatment of indolent lymphoid malignancies. Ann Intern Med 1994,120(9):784-791. 10.7326/0003-4819-120-9-199405010-00010PubMed Saven A, Piro LD: 2-Chlorodeoxyadenosine: a newer purine analog active in the treatment of indolent lymphoid malignancies. Ann Intern Med 1994,120(9):784-791. 10.7326/0003-4819-120-9-199405010-00010PubMed
41.
go back to reference Bonate PL, et al.: Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 2006,5(10):855-863. 10.1038/nrd2055PubMed Bonate PL, et al.: Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 2006,5(10):855-863. 10.1038/nrd2055PubMed
42.
go back to reference Avramis VI, Plunkett W: 2-fluoro-ATP: a toxic metabolite of 9-beta-D-arabinosyl-2-fluoroadenine. Biochem Biophys Res Commun 1983,113(1):35-43. 10.1016/0006-291X(83)90428-XPubMed Avramis VI, Plunkett W: 2-fluoro-ATP: a toxic metabolite of 9-beta-D-arabinosyl-2-fluoroadenine. Biochem Biophys Res Commun 1983,113(1):35-43. 10.1016/0006-291X(83)90428-XPubMed
43.
go back to reference Montgomery JA, et al.: Synthesis and biologic activity of 2'-fluoro-2-halo derivatives of 9-beta-D-arabinofuranosyladenine. J Med Chem 1992,35(2):397-401. 10.1021/jm00080a029PubMed Montgomery JA, et al.: Synthesis and biologic activity of 2'-fluoro-2-halo derivatives of 9-beta-D-arabinofuranosyladenine. J Med Chem 1992,35(2):397-401. 10.1021/jm00080a029PubMed
44.
go back to reference Galmarini CM, Mackey JR, Dumontet C: Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 2002,3(7):415-424. 10.1016/S1470-2045(02)00788-XPubMed Galmarini CM, Mackey JR, Dumontet C: Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 2002,3(7):415-424. 10.1016/S1470-2045(02)00788-XPubMed
45.
go back to reference Zhang Y, Secrist JA 3rd, Ealick SE: The structure of human deoxycytidine kinase in complex with clofarabine reveals key interactions for prodrug activation. Acta Crystallogr D Biol Crystallogr 2006,62(Pt 2):133-139.PubMed Zhang Y, Secrist JA 3rd, Ealick SE: The structure of human deoxycytidine kinase in complex with clofarabine reveals key interactions for prodrug activation. Acta Crystallogr D Biol Crystallogr 2006,62(Pt 2):133-139.PubMed
46.
go back to reference Zhenchuk A, et al.: Mechanisms of anti-cancer action and pharmacology of clofarabine. Biochem Pharmacol 2009,78(11):1351-1359. 10.1016/j.bcp.2009.06.094PubMed Zhenchuk A, et al.: Mechanisms of anti-cancer action and pharmacology of clofarabine. Biochem Pharmacol 2009,78(11):1351-1359. 10.1016/j.bcp.2009.06.094PubMed
47.
go back to reference Lotfi K, et al.: Biochemical pharmacology and resistance to 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine, a novel analogue of cladribine in human leukemic cells. Clin Cancer Res 1999,5(9):2438-2444.PubMed Lotfi K, et al.: Biochemical pharmacology and resistance to 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine, a novel analogue of cladribine in human leukemic cells. Clin Cancer Res 1999,5(9):2438-2444.PubMed
48.
go back to reference Parker WB, et al.: Comparison of the mechanism of cytotoxicity of 2-chloro-9-(2-deoxy-2- fluoro-beta-D-arabinofuranosyl)adenine, 2-chloro-9-(2-deoxy-2-fluoro- beta-D-ribofuranosyl)adenine, and 2-chloro-9-(2-deoxy-2,2-difluoro- beta-D-ribofuranosyl)adenine in CEM cells. Mol Pharmacol 1999,55(3):515-520.PubMed Parker WB, et al.: Comparison of the mechanism of cytotoxicity of 2-chloro-9-(2-deoxy-2- fluoro-beta-D-arabinofuranosyl)adenine, 2-chloro-9-(2-deoxy-2-fluoro- beta-D-ribofuranosyl)adenine, and 2-chloro-9-(2-deoxy-2,2-difluoro- beta-D-ribofuranosyl)adenine in CEM cells. Mol Pharmacol 1999,55(3):515-520.PubMed
49.
go back to reference Nagai S, et al.: Deoxycytidine kinase modulates the impact of the ABC transporter ABCG2 on clofarabine cytotoxicity. Cancer Res 2011,71(5):1781-1791. 10.1158/0008-5472.CAN-10-1919PubMedPubMedCentral Nagai S, et al.: Deoxycytidine kinase modulates the impact of the ABC transporter ABCG2 on clofarabine cytotoxicity. Cancer Res 2011,71(5):1781-1791. 10.1158/0008-5472.CAN-10-1919PubMedPubMedCentral
50.
go back to reference Smal C, et al.: Identification of in vivo phosphorylation sites on human deoxycytidine kinase. Role of Ser-74 in the control of enzyme activity. J Biol Chem 2006,281(8):4887-4893.PubMed Smal C, et al.: Identification of in vivo phosphorylation sites on human deoxycytidine kinase. Role of Ser-74 in the control of enzyme activity. J Biol Chem 2006,281(8):4887-4893.PubMed
51.
go back to reference Yang C, et al.: Deoxycytidine kinase regulates the G2/M checkpoint through interaction with cyclin-dependent kinase 1 in response to DNA damage. Nucleic Acids Res 2012,40(19):9621-9632. 10.1093/nar/gks707PubMedPubMedCentral Yang C, et al.: Deoxycytidine kinase regulates the G2/M checkpoint through interaction with cyclin-dependent kinase 1 in response to DNA damage. Nucleic Acids Res 2012,40(19):9621-9632. 10.1093/nar/gks707PubMedPubMedCentral
52.
go back to reference Parker WB, et al.: Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5'-triphosphate. Cancer Res 1991,51(9):2386-2394.PubMed Parker WB, et al.: Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5'-triphosphate. Cancer Res 1991,51(9):2386-2394.PubMed
53.
go back to reference Xie C, Plunkett W: Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res 1995,55(13):2847-2852.PubMed Xie C, Plunkett W: Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res 1995,55(13):2847-2852.PubMed
54.
go back to reference Genini D, et al.: Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J Biol Chem 2000,275(1):29-34. 10.1074/jbc.275.1.29PubMed Genini D, et al.: Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J Biol Chem 2000,275(1):29-34. 10.1074/jbc.275.1.29PubMed
55.
go back to reference Kantarjian HM, et al.: Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J Clin Oncol 2003,21(6):1167-1173. 10.1200/JCO.2003.04.031PubMed Kantarjian HM, et al.: Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J Clin Oncol 2003,21(6):1167-1173. 10.1200/JCO.2003.04.031PubMed
56.
go back to reference Stackhouse MA, et al.: Preclinical combination therapy of clofarabine plus radiation. Nucleosides Nucleotides Nucleic Acids 2012,31(9):692-705. 10.1080/15257770.2012.723770PubMed Stackhouse MA, et al.: Preclinical combination therapy of clofarabine plus radiation. Nucleosides Nucleotides Nucleic Acids 2012,31(9):692-705. 10.1080/15257770.2012.723770PubMed
57.
go back to reference Gandhi V, Plunkett W: Clofarabine and nelarabine: two new purine nucleoside analogs. Curr Opin Oncol 2006,18(6):584-590. 10.1097/01.cco.0000245326.65152.afPubMed Gandhi V, Plunkett W: Clofarabine and nelarabine: two new purine nucleoside analogs. Curr Opin Oncol 2006,18(6):584-590. 10.1097/01.cco.0000245326.65152.afPubMed
58.
go back to reference Lambe CU, et al.: 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res 1995,55(15):3352-3356.PubMed Lambe CU, et al.: 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res 1995,55(15):3352-3356.PubMed
59.
go back to reference Cohen A, et al.: Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest 1978,61(5):1405-1409. 10.1172/JCI109058PubMedPubMedCentral Cohen A, et al.: Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest 1978,61(5):1405-1409. 10.1172/JCI109058PubMedPubMedCentral
60.
go back to reference Cohen A, et al.: The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol 1980,125(4):1578-1582.PubMed Cohen A, et al.: The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol 1980,125(4):1578-1582.PubMed
61.
go back to reference Gelfand EW, Lee JJ, Dosch HM: Selective toxicity of purine deoxynucleosides for human lymphocyte growth and function. Proc Natl Acad Sci U S A 1979,76(4):1998-2002. 10.1073/pnas.76.4.1998PubMedPubMedCentral Gelfand EW, Lee JJ, Dosch HM: Selective toxicity of purine deoxynucleosides for human lymphocyte growth and function. Proc Natl Acad Sci U S A 1979,76(4):1998-2002. 10.1073/pnas.76.4.1998PubMedPubMedCentral
62.
go back to reference Giblett ER, et al.: Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975,1(7914):1010-1013.PubMed Giblett ER, et al.: Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975,1(7914):1010-1013.PubMed
63.
go back to reference Rodriguez CO Jr, Stellrecht CM, Gandhi V: Mechanisms for T-cell selective cytotoxicity of arabinosylguanine. Blood 2003,102(5):1842-1848. 10.1182/blood-2003-01-0317PubMed Rodriguez CO Jr, Stellrecht CM, Gandhi V: Mechanisms for T-cell selective cytotoxicity of arabinosylguanine. Blood 2003,102(5):1842-1848. 10.1182/blood-2003-01-0317PubMed
64.
go back to reference Cohen A, Lee JW, Gelfand EW: Selective toxicity of deoxyguanosine and arabinosyl guanine for T-leukemic cells. Blood 1983,61(4):660-666.PubMed Cohen A, Lee JW, Gelfand EW: Selective toxicity of deoxyguanosine and arabinosyl guanine for T-leukemic cells. Blood 1983,61(4):660-666.PubMed
65.
go back to reference Prus KL, Averett DR, Zimmerman TP: Transport and metabolism of 9-beta-D-arabinofuranosylguanine in a human T-lymphoblastoid cell line: nitrobenzylthioinosine-sensitive and -insensitive influx. Cancer Res 1990,50(6):1817-1821.PubMed Prus KL, Averett DR, Zimmerman TP: Transport and metabolism of 9-beta-D-arabinofuranosylguanine in a human T-lymphoblastoid cell line: nitrobenzylthioinosine-sensitive and -insensitive influx. Cancer Res 1990,50(6):1817-1821.PubMed
66.
go back to reference Rodriguez CO Jr, et al.: Arabinosylguanine is phosphorylated by both cytoplasmic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. Cancer Res 2002,62(11):3100-3105.PubMed Rodriguez CO Jr, et al.: Arabinosylguanine is phosphorylated by both cytoplasmic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. Cancer Res 2002,62(11):3100-3105.PubMed
67.
go back to reference Fyrberg A, et al.: Induction of fetal hemoglobin and ABCB1 gene expression in 9-beta-D-arabinofuranosylguanine-resistant MOLT-4 cells. Cancer Chemother Pharmacol 2011,68(3):583-591. 10.1007/s00280-010-1524-5PubMed Fyrberg A, et al.: Induction of fetal hemoglobin and ABCB1 gene expression in 9-beta-D-arabinofuranosylguanine-resistant MOLT-4 cells. Cancer Chemother Pharmacol 2011,68(3):583-591. 10.1007/s00280-010-1524-5PubMed
68.
go back to reference Rodriguez CO Jr, Gandh V: Arabinosylguanine-induced apoptosis of T-lymphoblastic cells: incorporation into DNA is a necessary step. Cancer Res 1999,59(19):4937-4943.PubMed Rodriguez CO Jr, Gandh V: Arabinosylguanine-induced apoptosis of T-lymphoblastic cells: incorporation into DNA is a necessary step. Cancer Res 1999,59(19):4937-4943.PubMed
69.
go back to reference Sundaram M, et al.: Topology of a human equilibrative, nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter (hENT1) implicated in the cellular uptake of adenosine and anti-cancer drugs. J Biol Chem 2001,276(48):45270-45275. 10.1074/jbc.M107169200PubMed Sundaram M, et al.: Topology of a human equilibrative, nitrobenzylthioinosine (NBMPR)-sensitive nucleoside transporter (hENT1) implicated in the cellular uptake of adenosine and anti-cancer drugs. J Biol Chem 2001,276(48):45270-45275. 10.1074/jbc.M107169200PubMed
70.
go back to reference Capizzi RL, et al.: Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. J Clin Oncol 1983,1(12):763-771.PubMed Capizzi RL, et al.: Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. J Clin Oncol 1983,1(12):763-771.PubMed
71.
go back to reference Verhoef V, Sarup J, Fridland A: Identification of the mechanism of activation of 9-beta-D-arabinofuranosyladenine in human lymphoid cells using mutants deficient in nucleoside kinases. Cancer Res 1981,41(11 Pt 1):4478-4483.PubMed Verhoef V, Sarup J, Fridland A: Identification of the mechanism of activation of 9-beta-D-arabinofuranosyladenine in human lymphoid cells using mutants deficient in nucleoside kinases. Cancer Res 1981,41(11 Pt 1):4478-4483.PubMed
72.
go back to reference Chen ZS, Tiwari AK: Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011,278(18):3226-3245. 10.1111/j.1742-4658.2011.08235.xPubMedPubMedCentral Chen ZS, Tiwari AK: Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011,278(18):3226-3245. 10.1111/j.1742-4658.2011.08235.xPubMedPubMedCentral
73.
go back to reference Bhalla K, Nayak R, Grant S: Isolation and characterization of a deoxycytidine kinase-deficient human promyelocytic leukemic cell line highly resistant to 1-beta-D- arabinofuranosylcytosine. Cancer Res 1984,44(11):5029-5037.PubMed Bhalla K, Nayak R, Grant S: Isolation and characterization of a deoxycytidine kinase-deficient human promyelocytic leukemic cell line highly resistant to 1-beta-D- arabinofuranosylcytosine. Cancer Res 1984,44(11):5029-5037.PubMed
74.
go back to reference Owens JK, et al.: Resistance to 1-beta-D-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene. Cancer Res 1992,52(9):2389-2393.PubMed Owens JK, et al.: Resistance to 1-beta-D-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene. Cancer Res 1992,52(9):2389-2393.PubMed
75.
go back to reference Keith FJ, et al.: Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 1995,9(1):131-138.PubMed Keith FJ, et al.: Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 1995,9(1):131-138.PubMed
76.
go back to reference Iacobini M, et al.: Involvement of oxygen radicals in cytarabine-induced apoptosis in human polymorphonuclear cells. Biochem Pharmacol 2001,61(8):1033-1040. 10.1016/S0006-2952(01)00548-2PubMed Iacobini M, et al.: Involvement of oxygen radicals in cytarabine-induced apoptosis in human polymorphonuclear cells. Biochem Pharmacol 2001,61(8):1033-1040. 10.1016/S0006-2952(01)00548-2PubMed
77.
go back to reference Seidman AD: Gemcitabine as single-agent therapy in the management of advanced breast cancer. Oncology (Williston Park) 2001,15(2 Suppl 3):11-14. Seidman AD: Gemcitabine as single-agent therapy in the management of advanced breast cancer. Oncology (Williston Park) 2001,15(2 Suppl 3):11-14.
78.
go back to reference Carmichael J, et al.: Advanced breast cancer: a phase II trial with gemcitabine. J Clin Oncol 1995,13(11):2731-2736.PubMed Carmichael J, et al.: Advanced breast cancer: a phase II trial with gemcitabine. J Clin Oncol 1995,13(11):2731-2736.PubMed
79.
go back to reference Pollera CF, et al.: Weekly gemcitabine in advanced bladder cancer: a preliminary report from a phase I study. Ann Oncol 1994,5(2):182-184.PubMed Pollera CF, et al.: Weekly gemcitabine in advanced bladder cancer: a preliminary report from a phase I study. Ann Oncol 1994,5(2):182-184.PubMed
80.
go back to reference Lund B, et al.: Phase II study of gemcitabine (2',2'-difluorodeoxycytidine) in previously treated ovarian cancer patients. J Natl Cancer Inst 1994,86(20):1530-1533. 10.1093/jnci/86.20.1530PubMed Lund B, et al.: Phase II study of gemcitabine (2',2'-difluorodeoxycytidine) in previously treated ovarian cancer patients. J Natl Cancer Inst 1994,86(20):1530-1533. 10.1093/jnci/86.20.1530PubMed
81.
go back to reference Anderson H, et al.: Single-agent activity of weekly gemcitabine in advanced non-small-cell lung cancer: a phase II study. J Clin Oncol 1994,12(9):1821-1826.PubMed Anderson H, et al.: Single-agent activity of weekly gemcitabine in advanced non-small-cell lung cancer: a phase II study. J Clin Oncol 1994,12(9):1821-1826.PubMed
82.
go back to reference Abratt RP, et al.: Efficacy and safety profile of gemcitabine in non-small-cell lung cancer: a phase II study. J Clin Oncol 1994,12(8):1535-1540.PubMed Abratt RP, et al.: Efficacy and safety profile of gemcitabine in non-small-cell lung cancer: a phase II study. J Clin Oncol 1994,12(8):1535-1540.PubMed
83.
go back to reference Casper ES, et al.: Phase II trial of gemcitabine (2,2'-difluorodeoxycytidine) in patients with adenocarcinoma of the pancreas. Invest New Drugs 1994,12(1):29-34. 10.1007/BF00873232PubMed Casper ES, et al.: Phase II trial of gemcitabine (2,2'-difluorodeoxycytidine) in patients with adenocarcinoma of the pancreas. Invest New Drugs 1994,12(1):29-34. 10.1007/BF00873232PubMed
84.
go back to reference Moore M: Activity of gemcitabine in patients with advanced pancreatic carcinoma. A review. Cancer 1996,78(3 Suppl):633-638.PubMed Moore M: Activity of gemcitabine in patients with advanced pancreatic carcinoma. A review. Cancer 1996,78(3 Suppl):633-638.PubMed
85.
go back to reference Rauchwerger DR, et al.: Equilibrative-sensitive nucleoside transporter and its role in gemcitabine sensitivity. Cancer Res 2000,60(21):6075-6079.PubMed Rauchwerger DR, et al.: Equilibrative-sensitive nucleoside transporter and its role in gemcitabine sensitivity. Cancer Res 2000,60(21):6075-6079.PubMed
86.
go back to reference Damaraju VL, et al.: Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003,22(47):7524-7536. 10.1038/sj.onc.1206952PubMed Damaraju VL, et al.: Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003,22(47):7524-7536. 10.1038/sj.onc.1206952PubMed
87.
go back to reference Heinemann V, et al.: Comparison of the cellular pharmacokinetics and toxicity of 2',2'-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res 1988,48(14):4024-4031.PubMed Heinemann V, et al.: Comparison of the cellular pharmacokinetics and toxicity of 2',2'-difluorodeoxycytidine and 1-beta-D-arabinofuranosylcytosine. Cancer Res 1988,48(14):4024-4031.PubMed
88.
go back to reference Galmarini CM, Mackey JR, Dumontet C: Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001,15(6):875-890. 10.1038/sj.leu.2402114PubMed Galmarini CM, Mackey JR, Dumontet C: Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia 2001,15(6):875-890. 10.1038/sj.leu.2402114PubMed
89.
go back to reference Plunkett W, et al.: Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 1995,22(4 Suppl 11):3-10.PubMed Plunkett W, et al.: Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 1995,22(4 Suppl 11):3-10.PubMed
90.
go back to reference Huang P, et al.: Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991,51(22):6110-6117.PubMed Huang P, et al.: Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991,51(22):6110-6117.PubMed
91.
go back to reference Huang P, Plunkett W: Induction of apoptosis by gemcitabine. Semin Oncol 1995,22(4 Suppl 11):19-25.PubMed Huang P, Plunkett W: Induction of apoptosis by gemcitabine. Semin Oncol 1995,22(4 Suppl 11):19-25.PubMed
92.
go back to reference Heinemann V, et al.: Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2',2'-difluorodeoxycytidine. Mol Pharmacol 1990,38(4):567-572.PubMed Heinemann V, et al.: Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2',2'-difluorodeoxycytidine. Mol Pharmacol 1990,38(4):567-572.PubMed
93.
go back to reference Chandler NM, Canete JJ, Callery MP: Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 2004,8(8):1072-1078. 10.1016/j.gassur.2004.09.054PubMed Chandler NM, Canete JJ, Callery MP: Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 2004,8(8):1072-1078. 10.1016/j.gassur.2004.09.054PubMed
94.
go back to reference Nabhan C, et al.: Caspase activation is required for gemcitabine activity in multiple myeloma cell lines. Mol Cancer Ther 2002,1(13):1221-1227.PubMed Nabhan C, et al.: Caspase activation is required for gemcitabine activity in multiple myeloma cell lines. Mol Cancer Ther 2002,1(13):1221-1227.PubMed
95.
go back to reference Bernier J, Hall EJ, Giaccia A: Radiation oncology: a century of achievements. Nat Rev Cancer 2004,4(9):737-747.PubMed Bernier J, Hall EJ, Giaccia A: Radiation oncology: a century of achievements. Nat Rev Cancer 2004,4(9):737-747.PubMed
96.
go back to reference Cariveau MJ, et al.: Clofarabine acts as radiosensitizer in vitro and in vivo by interfering with DNA damage response. Int J Radiat Oncol Biol Phys 2008,70(1):213-220. 10.1016/j.ijrobp.2007.09.012PubMed Cariveau MJ, et al.: Clofarabine acts as radiosensitizer in vitro and in vivo by interfering with DNA damage response. Int J Radiat Oncol Biol Phys 2008,70(1):213-220. 10.1016/j.ijrobp.2007.09.012PubMed
97.
go back to reference Gregoire V, et al.: Role of deoxycytidine kinase (dCK) activity in gemcitabine's radioenhancement in mice and human cell lines in vitro. Radiother Oncol 2002,63(3):329-338. 10.1016/S0167-8140(02)00106-8PubMed Gregoire V, et al.: Role of deoxycytidine kinase (dCK) activity in gemcitabine's radioenhancement in mice and human cell lines in vitro. Radiother Oncol 2002,63(3):329-338. 10.1016/S0167-8140(02)00106-8PubMed
98.
go back to reference Latourette HB, Lawton RL: Combined Radiation and Chemotherapy. JAMA 1963, 186: 1057-1060. 10.1001/jama.1963.03710120039008PubMed Latourette HB, Lawton RL: Combined Radiation and Chemotherapy. JAMA 1963, 186: 1057-1060. 10.1001/jama.1963.03710120039008PubMed
99.
go back to reference Shewach DS, et al.: Metabolism of 2',2'-difluoro-2'-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res 1994,54(12):3218-3223.PubMed Shewach DS, et al.: Metabolism of 2',2'-difluoro-2'-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res 1994,54(12):3218-3223.PubMed
100.
go back to reference Shewach DS, Lawrence TS: Antimetabolite radiosensitizers. J Clin Oncol 2007,25(26):4043-4050. 10.1200/JCO.2007.11.5287PubMed Shewach DS, Lawrence TS: Antimetabolite radiosensitizers. J Clin Oncol 2007,25(26):4043-4050. 10.1200/JCO.2007.11.5287PubMed
101.
go back to reference Ewald B, Sampath D, Plunkett W: Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 2008,27(50):6522-6537. 10.1038/onc.2008.316PubMed Ewald B, Sampath D, Plunkett W: Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 2008,27(50):6522-6537. 10.1038/onc.2008.316PubMed
102.
go back to reference Wachters FM, et al.: Selective targeting of homologous DNA recombination repair by gemcitabine. Int J Radiat Oncol Biol Phys 2003,57(2):553-562. 10.1016/S0360-3016(03)00503-0PubMed Wachters FM, et al.: Selective targeting of homologous DNA recombination repair by gemcitabine. Int J Radiat Oncol Biol Phys 2003,57(2):553-562. 10.1016/S0360-3016(03)00503-0PubMed
103.
go back to reference van Putten JWG, et al.: End-joining deficiency and radiosensitization induced by gemcitabine. Cancer Res 2001,61(4):1585-1591.PubMed van Putten JWG, et al.: End-joining deficiency and radiosensitization induced by gemcitabine. Cancer Res 2001,61(4):1585-1591.PubMed
104.
go back to reference Latz D, et al.: Radiosensitizing potential of gemcitabine (2',2'-difluoro-2'-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 1998,41(4):875-882. 10.1016/S0360-3016(98)00105-9PubMed Latz D, et al.: Radiosensitizing potential of gemcitabine (2',2'-difluoro-2'-deoxycytidine) within the cell cycle in vitro. Int J Radiat Oncol Biol Phys 1998,41(4):875-882. 10.1016/S0360-3016(98)00105-9PubMed
105.
go back to reference Lawrence TS, et al.: Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2',2'-difluoro-2'-deoxycytidine (Gemcitabine). Clin Cancer Res 1997,3(5):777-782.PubMed Lawrence TS, et al.: Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2',2'-difluoro-2'-deoxycytidine (Gemcitabine). Clin Cancer Res 1997,3(5):777-782.PubMed
106.
go back to reference Gregoire V, et al.: Radiosensitization of mouse sarcoma cells by fludarabine (F-ara-A) or gemcitabine (dFdC), two nucleoside analogues, is not mediated by an increased induction or a repair inhibition of DNA double-strand breaks as measured by pulsed-field gel electrophoresis. Int J Radiat Biol 1998,73(5):511-520. 10.1080/095530098142059PubMed Gregoire V, et al.: Radiosensitization of mouse sarcoma cells by fludarabine (F-ara-A) or gemcitabine (dFdC), two nucleoside analogues, is not mediated by an increased induction or a repair inhibition of DNA double-strand breaks as measured by pulsed-field gel electrophoresis. Int J Radiat Biol 1998,73(5):511-520. 10.1080/095530098142059PubMed
107.
go back to reference Taricani L, et al.: Phenotypic enhancement of thymidylate synthetase pathway inhibitors following ablation of Neil1 DNA glycosylase/lyase. Cell Cycle 2010,9(24):4876-4883. 10.4161/cc.9.24.14155PubMed Taricani L, et al.: Phenotypic enhancement of thymidylate synthetase pathway inhibitors following ablation of Neil1 DNA glycosylase/lyase. Cell Cycle 2010,9(24):4876-4883. 10.4161/cc.9.24.14155PubMed
108.
go back to reference Yamauchi T, et al.: DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res 2001,7(11):3580-3589.PubMed Yamauchi T, et al.: DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res 2001,7(11):3580-3589.PubMed
109.
go back to reference Bulgar AD, et al.: Targeting base excision repair suggests a new therapeutic strategy of fludarabine for the treatment of chronic lymphocytic leukemia. Leukemia 2010,24(10):1795-1799. 10.1038/leu.2010.166PubMed Bulgar AD, et al.: Targeting base excision repair suggests a new therapeutic strategy of fludarabine for the treatment of chronic lymphocytic leukemia. Leukemia 2010,24(10):1795-1799. 10.1038/leu.2010.166PubMed
110.
go back to reference Csapo Z, et al.: Activation of deoxycytidine kinase by gamma-irradiation and inactivation by hyperosmotic shock in human lymphocytes. Biochem Pharmacol 2003,65(12):2031-2039. 10.1016/S0006-2952(03)00182-5PubMed Csapo Z, et al.: Activation of deoxycytidine kinase by gamma-irradiation and inactivation by hyperosmotic shock in human lymphocytes. Biochem Pharmacol 2003,65(12):2031-2039. 10.1016/S0006-2952(03)00182-5PubMed
111.
go back to reference Pauwels B, et al.: The relation between deoxycytidine kinase activity and the radiosensitising effect of gemcitabine in eight different human tumour cell lines. BMC Cancer 2006, 6: 142. 10.1186/1471-2407-6-142PubMedPubMedCentral Pauwels B, et al.: The relation between deoxycytidine kinase activity and the radiosensitising effect of gemcitabine in eight different human tumour cell lines. BMC Cancer 2006, 6: 142. 10.1186/1471-2407-6-142PubMedPubMedCentral
112.
go back to reference Sigmond J, et al.: Enhanced activity of deoxycytidine kinase after pulsed low dose rate and single dose gamma irradiation. Nucleosides Nucleotides Nucleic Acids 2006,25(9–11):1177-1180.PubMed Sigmond J, et al.: Enhanced activity of deoxycytidine kinase after pulsed low dose rate and single dose gamma irradiation. Nucleosides Nucleotides Nucleic Acids 2006,25(9–11):1177-1180.PubMed
113.
go back to reference Smal C, et al.: Activation of deoxycytidine kinase by protein kinase inhibitors and okadaic acid in leukemic cells. Biochem Pharmacol 2004,68(1):95-103. 10.1016/j.bcp.2004.02.031PubMed Smal C, et al.: Activation of deoxycytidine kinase by protein kinase inhibitors and okadaic acid in leukemic cells. Biochem Pharmacol 2004,68(1):95-103. 10.1016/j.bcp.2004.02.031PubMed
114.
go back to reference Smal C, et al.: Positive regulation of deoxycytidine kinase activity by phosphorylation of Ser-74 in B-cell chronic lymphocytic leukaemia lymphocytes. Cancer Lett 2007,253(1):68-73. 10.1016/j.canlet.2007.01.013PubMed Smal C, et al.: Positive regulation of deoxycytidine kinase activity by phosphorylation of Ser-74 in B-cell chronic lymphocytic leukaemia lymphocytes. Cancer Lett 2007,253(1):68-73. 10.1016/j.canlet.2007.01.013PubMed
115.
go back to reference Smal C, et al.: Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity. Arch Biochem Biophys 2010,502(1):44-52. 10.1016/j.abb.2010.07.009PubMed Smal C, et al.: Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity. Arch Biochem Biophys 2010,502(1):44-52. 10.1016/j.abb.2010.07.009PubMed
116.
go back to reference Ubersax JA, et al.: Targets of the cyclin-dependent kinase Cdk1. Nature 2003,425(6960):859-864. 10.1038/nature02062PubMed Ubersax JA, et al.: Targets of the cyclin-dependent kinase Cdk1. Nature 2003,425(6960):859-864. 10.1038/nature02062PubMed
117.
go back to reference Amsailale R, et al.: Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol 2012,84(1):43-51. 10.1016/j.bcp.2012.03.022PubMed Amsailale R, et al.: Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol 2012,84(1):43-51. 10.1016/j.bcp.2012.03.022PubMed
118.
go back to reference McSorley T, et al.: Mimicking phosphorylation of Ser-74 on human deoxycytidine kinase selectively increases catalytic activity for dC and dC analogues. FEBS Lett 2008,582(5):720-724. 10.1016/j.febslet.2008.01.048PubMedPubMedCentral McSorley T, et al.: Mimicking phosphorylation of Ser-74 on human deoxycytidine kinase selectively increases catalytic activity for dC and dC analogues. FEBS Lett 2008,582(5):720-724. 10.1016/j.febslet.2008.01.048PubMedPubMedCentral
119.
go back to reference Lamba JK, et al.: Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther 2007,323(3):935-945. 10.1124/jpet.107.128595PubMed Lamba JK, et al.: Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther 2007,323(3):935-945. 10.1124/jpet.107.128595PubMed
120.
go back to reference Kocabas NA, et al.: Gemcitabine pharmacogenomics: deoxycytidine kinase and cytidylate kinase gene resequencing and functional genomics. Drug Metab Dispos 2008,36(9):1951-1959. 10.1124/dmd.108.020925PubMedPubMedCentral Kocabas NA, et al.: Gemcitabine pharmacogenomics: deoxycytidine kinase and cytidylate kinase gene resequencing and functional genomics. Drug Metab Dispos 2008,36(9):1951-1959. 10.1124/dmd.108.020925PubMedPubMedCentral
121.
go back to reference Li L, et al.: Gemcitabine and arabinosylcytosin pharmacogenomics: genome-wide association and drug response biomarkers. PLoS One 2009,4(11):e7765. 10.1371/journal.pone.0007765PubMedPubMedCentral Li L, et al.: Gemcitabine and arabinosylcytosin pharmacogenomics: genome-wide association and drug response biomarkers. PLoS One 2009,4(11):e7765. 10.1371/journal.pone.0007765PubMedPubMedCentral
122.
go back to reference Ryu JS, et al.: Lack of association of genetic variations of deoxycytidine kinase with toxicity or survival of non-small-cell lung cancer patients treated with gemcitabine plus cisplatin. Oncol Res 2012,20(1):25-30. 10.3727/096504012X13425470196137PubMed Ryu JS, et al.: Lack of association of genetic variations of deoxycytidine kinase with toxicity or survival of non-small-cell lung cancer patients treated with gemcitabine plus cisplatin. Oncol Res 2012,20(1):25-30. 10.3727/096504012X13425470196137PubMed
123.
go back to reference Ohmine K, et al.: Attenuation of phosphorylation by deoxycytidine kinase is key to acquired gemcitabine resistance in a pancreatic cancer cell line: targeted proteomic and metabolomic analyses in PK9 cells. Pharm Res 2012,29(7):2006-2016. 10.1007/s11095-012-0728-2PubMed Ohmine K, et al.: Attenuation of phosphorylation by deoxycytidine kinase is key to acquired gemcitabine resistance in a pancreatic cancer cell line: targeted proteomic and metabolomic analyses in PK9 cells. Pharm Res 2012,29(7):2006-2016. 10.1007/s11095-012-0728-2PubMed
124.
go back to reference Saiki Y, et al.: DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells. Biochem Biophys Res Commun 2012,421(1):98-104. 10.1016/j.bbrc.2012.03.122PubMed Saiki Y, et al.: DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells. Biochem Biophys Res Commun 2012,421(1):98-104. 10.1016/j.bbrc.2012.03.122PubMed
125.
go back to reference Rossolillo P, et al.: Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation. PLoS Genet 2012,8(8):e1002904. 10.1371/journal.pgen.1002904PubMedPubMedCentral Rossolillo P, et al.: Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation. PLoS Genet 2012,8(8):e1002904. 10.1371/journal.pgen.1002904PubMedPubMedCentral
126.
go back to reference Hazra S, et al.: Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release. Biochemistry 2011,50(14):2870-2880. 10.1021/bi2001032PubMedPubMedCentral Hazra S, et al.: Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release. Biochemistry 2011,50(14):2870-2880. 10.1021/bi2001032PubMedPubMedCentral
127.
go back to reference Neschadim A, et al.: Cell fate control gene therapy based on engineered variants of human deoxycytidine kinase. Mol Ther 2012,20(5):1002-1013. 10.1038/mt.2011.298PubMedPubMedCentral Neschadim A, et al.: Cell fate control gene therapy based on engineered variants of human deoxycytidine kinase. Mol Ther 2012,20(5):1002-1013. 10.1038/mt.2011.298PubMedPubMedCentral
128.
go back to reference Hazra S, et al.: Extending thymidine kinase activity to the catalytic repertoire of human deoxycytidine kinase. Biochemistry 2009,48(6):1256-1263. 10.1021/bi802062wPubMedPubMedCentral Hazra S, et al.: Extending thymidine kinase activity to the catalytic repertoire of human deoxycytidine kinase. Biochemistry 2009,48(6):1256-1263. 10.1021/bi802062wPubMedPubMedCentral
Metadata
Title
New insights into the synergism of nucleoside analogs with radiotherapy
Authors
Michael W Lee
William B Parker
Bo Xu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-223

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue