Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2024

Open Access 01-12-2024 | Research

Neuroprotective effect of acetoxypachydiol against oxidative stress through activation of the Keap1-Nrf2/HO-1 pathway

Authors: Yu Qi, Ge Liu, Shengjie Jin, Rong Jian, Ziqiang Zou, Chenjing Wang, Yuanlong Zhang, Min Zhao, Haoru Zhu, Pengcheng Yan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2024

Login to get access

Abstract

Background

Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms.

Methods

The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen–glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro.

Results

APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD.

Conclusions

APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pol AVD, Gilst WHV, Voors AA, Meer PVD. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;21(4):425–35.PubMedCrossRef Pol AVD, Gilst WHV, Voors AA, Meer PVD. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019;21(4):425–35.PubMedCrossRef
2.
go back to reference Chamorro A, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–81.PubMedCrossRef Chamorro A, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869–81.PubMedCrossRef
3.
go back to reference Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Bio Med. 2018;117:76–89.CrossRef Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Bio Med. 2018;117:76–89.CrossRef
4.
go back to reference Johnson DA, Johnson JA. Nrf2-a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Bio Med. 2015;88:253–67.CrossRef Johnson DA, Johnson JA. Nrf2-a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Bio Med. 2015;88:253–67.CrossRef
5.
go back to reference Paladino S, Conte A, Caggiano R, Pierantoni GM, Faraonio R. Nrf2 pathway in age-related neurological disorders: insights into microRNAs. Cell Physiol Biochem. 2018;47(5):1951–76.PubMedCrossRef Paladino S, Conte A, Caggiano R, Pierantoni GM, Faraonio R. Nrf2 pathway in age-related neurological disorders: insights into microRNAs. Cell Physiol Biochem. 2018;47(5):1951–76.PubMedCrossRef
6.
go back to reference Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–47.PubMedPubMedCentralCrossRef Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–47.PubMedPubMedCentralCrossRef
7.
go back to reference Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):241–72.PubMedCrossRef Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):241–72.PubMedCrossRef
8.
go back to reference Stewart JD, Hengstler JG, Bolt HM. Control of oxidative stress by the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):239–239.PubMedCrossRef Stewart JD, Hengstler JG, Bolt HM. Control of oxidative stress by the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):239–239.PubMedCrossRef
9.
go back to reference Alfredo SIC, Perla M. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018;134:92–9.CrossRef Alfredo SIC, Perla M. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018;134:92–9.CrossRef
10.
go back to reference Gao JM, Chen NN, Li N, Xu F, Wang W, Lei YY, Shi JS, Gong QH. Neuroprotective effects of trilobatin, a novel naturally occurring Sirt3 agonist from Rehd., mitigate cerebral ischemia/reperfusion injury: involvement of TLR4/NF-κB and Nrf2/Keap-1 signaling. Antioxid Redox Sign. 2020;33(2):117–43.CrossRef Gao JM, Chen NN, Li N, Xu F, Wang W, Lei YY, Shi JS, Gong QH. Neuroprotective effects of trilobatin, a novel naturally occurring Sirt3 agonist from Rehd., mitigate cerebral ischemia/reperfusion injury: involvement of TLR4/NF-κB and Nrf2/Keap-1 signaling. Antioxid Redox Sign. 2020;33(2):117–43.CrossRef
11.
go back to reference Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, Liu DD, Ai QD, Gong HF, Wang ZZ, Sun HS, Feng ZP, Chen NH. Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin. 2019;40(1):13–25.PubMedCrossRef Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, Liu DD, Ai QD, Gong HF, Wang ZZ, Sun HS, Feng ZP, Chen NH. Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin. 2019;40(1):13–25.PubMedCrossRef
12.
go back to reference Bian YQ, Chen Y, Wang XF, Cui GZ, Ung COL, Lu JH, Cong WH, Tang BQ, Lee SMY. Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3 beta and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer’s disease. J Adv Res. 2021;34:1–12.PubMedPubMedCentralCrossRef Bian YQ, Chen Y, Wang XF, Cui GZ, Ung COL, Lu JH, Cong WH, Tang BQ, Lee SMY. Oxyphylla A ameliorates cognitive deficits and alleviates neuropathology via the Akt-GSK3 beta and Nrf2-Keap1-HO-1 pathways in vitro and in vivo murine models of Alzheimer’s disease. J Adv Res. 2021;34:1–12.PubMedPubMedCentralCrossRef
13.
go back to reference Kim S, Viswanath ANI, Park JH, Lee H, Park AY, Choi JW, Kim HJ, Londhe AM, Jang BK, Lee J, Hwang H, Lim SM, Pae AN, Park KD. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model. Neuropharmacology. 2020;167:107989.PubMedCrossRef Kim S, Viswanath ANI, Park JH, Lee H, Park AY, Choi JW, Kim HJ, Londhe AM, Jang BK, Lee J, Hwang H, Lim SM, Pae AN, Park KD. Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model. Neuropharmacology. 2020;167:107989.PubMedCrossRef
14.
go back to reference Guo L, Shi L. Vitexin improves cerebral ischemia-reperfusion injury by attenuating oxidative injury and ferroptosis via Keap1/Nrf2/HO-1signaling. Neurochem Res. 2023;48(3):980–95.PubMedCrossRef Guo L, Shi L. Vitexin improves cerebral ischemia-reperfusion injury by attenuating oxidative injury and ferroptosis via Keap1/Nrf2/HO-1signaling. Neurochem Res. 2023;48(3):980–95.PubMedCrossRef
16.
go back to reference Montuori E, Hyde CAC, Crea F, Golding J, Lauritano C. Marine Natural products with activities against prostate Cancer: recent discoveries. Int J Mol Sci. 2023;24(2):1435–58.PubMedPubMedCentralCrossRef Montuori E, Hyde CAC, Crea F, Golding J, Lauritano C. Marine Natural products with activities against prostate Cancer: recent discoveries. Int J Mol Sci. 2023;24(2):1435–58.PubMedPubMedCentralCrossRef
17.
go back to reference Wu L, Wang W, Zhang X, Zhao X, Yu G. Anti-HBV activity and mechanism of marine-derived polyguluronate sulfate (PGS) in vitro. Carbohydr Polym. 2016;143:139–48.PubMedCrossRef Wu L, Wang W, Zhang X, Zhao X, Yu G. Anti-HBV activity and mechanism of marine-derived polyguluronate sulfate (PGS) in vitro. Carbohydr Polym. 2016;143:139–48.PubMedCrossRef
18.
go back to reference Stanojkovic TP, Konic-Ristic A, Kljajic Z, Grozdanic-Stanisavljevic N, Srdic-Rajic T, Zdunic G, Savikin K. Antioxidant, antiplatelet and cytotoxic activity of extract of cystoseira amentacea from the coast of Montenegro (south-east adriatic sea). Dig J Nanomater Bios. 2014;9(2):869–80. Stanojkovic TP, Konic-Ristic A, Kljajic Z, Grozdanic-Stanisavljevic N, Srdic-Rajic T, Zdunic G, Savikin K. Antioxidant, antiplatelet and cytotoxic activity of extract of cystoseira amentacea from the coast of Montenegro (south-east adriatic sea). Dig J Nanomater Bios. 2014;9(2):869–80.
19.
go back to reference Qi Y, Liu G, Fang C, Jing C, Tang S, Li G, Wang C, Zhu H, Zhao M, Sun Z, Wu J, Yan P. Antioxidant and neuroprotective xenicane diterpenes from the Brown Alga Dictyota coriacea. Acs Omega. 2023;8(8):8034–44.PubMedPubMedCentralCrossRef Qi Y, Liu G, Fang C, Jing C, Tang S, Li G, Wang C, Zhu H, Zhao M, Sun Z, Wu J, Yan P. Antioxidant and neuroprotective xenicane diterpenes from the Brown Alga Dictyota coriacea. Acs Omega. 2023;8(8):8034–44.PubMedPubMedCentralCrossRef
20.
go back to reference Qi Y, Wang Z, Zhang J, Tang S, Zhu H, Jiang B, Li X, Wang J, Sun Z, Zhao M, Zhu H, Yan P. Anti-neuroinflammatory meroterpenoids from a Chinese Collection of the Brown Alga Sargassum siliquastrum. J Nat Prod. 2023;86(5):1284–93.PubMedCrossRef Qi Y, Wang Z, Zhang J, Tang S, Zhu H, Jiang B, Li X, Wang J, Sun Z, Zhao M, Zhu H, Yan P. Anti-neuroinflammatory meroterpenoids from a Chinese Collection of the Brown Alga Sargassum siliquastrum. J Nat Prod. 2023;86(5):1284–93.PubMedCrossRef
21.
go back to reference Martić A, Čižmek L, Ul’yanovskii NV, Paradžik T, Perković L, Matijević G, Vujović T, Baković M, Babić S, Kosyakov DS, Trebše P, Rakovac RC. Intra-species variations of Bioactive compounds of two Dictyota species from the Adriatic Sea: antioxidant, Antimicrobial, Dermatological, Dietary, and neuroprotective potential. Antioxid (Basel). 2023;12(4):857–86.CrossRef Martić A, Čižmek L, Ul’yanovskii NV, Paradžik T, Perković L, Matijević G, Vujović T, Baković M, Babić S, Kosyakov DS, Trebše P, Rakovac RC. Intra-species variations of Bioactive compounds of two Dictyota species from the Adriatic Sea: antioxidant, Antimicrobial, Dermatological, Dietary, and neuroprotective potential. Antioxid (Basel). 2023;12(4):857–86.CrossRef
22.
go back to reference Wu J, Xi Y, Li G, Zheng Y, Wang Z, Wang J, Fang C, Sun Z, Hu L, Jiang W, Dai L, Dong J, Qiu P, Zhao M, Yan P. Hydroazulene Diterpenes from a Dictyota Brown Alga and their antioxidant and neuroprotective effects against Cerebral Ischemia-Reperfusion Injury. J Nat Prod. 2021;84(4):1306–15.PubMedCrossRef Wu J, Xi Y, Li G, Zheng Y, Wang Z, Wang J, Fang C, Sun Z, Hu L, Jiang W, Dai L, Dong J, Qiu P, Zhao M, Yan P. Hydroazulene Diterpenes from a Dictyota Brown Alga and their antioxidant and neuroprotective effects against Cerebral Ischemia-Reperfusion Injury. J Nat Prod. 2021;84(4):1306–15.PubMedCrossRef
23.
go back to reference Ishitsuka M, Kusumi T, Kakisawa H, Kawakami Y, Nagai Y, Sato T. Structural elucidation and conformational analysis of germacrane-type diterpenoids from the brown algapachydictyoncoriaceum. Tetrahedron Lett. 1986;27(23):2639–42.CrossRef Ishitsuka M, Kusumi T, Kakisawa H, Kawakami Y, Nagai Y, Sato T. Structural elucidation and conformational analysis of germacrane-type diterpenoids from the brown algapachydictyoncoriaceum. Tetrahedron Lett. 1986;27(23):2639–42.CrossRef
24.
go back to reference Cheng S, Zhao M, Sun Z, Yuan W, Zhang S, Xiang Z, Cai Y, Dong J, Huang K, Yan P. Diterpenes from a Chinese collection of the brown alga Dictyota plectens. J Nat Prod. 2014;77(12):2685–93.PubMedCrossRef Cheng S, Zhao M, Sun Z, Yuan W, Zhang S, Xiang Z, Cai Y, Dong J, Huang K, Yan P. Diterpenes from a Chinese collection of the brown alga Dictyota plectens. J Nat Prod. 2014;77(12):2685–93.PubMedCrossRef
25.
go back to reference Wu J, Xi Y, Huang L, Li G, Mao Q, Fang C, Shan T, Jiang W, Zhao M, He W, Dong J, Li X, Qiu P, Yan P. A steroid-type antioxidant targeting the Keap1/Nrf2/ARE signaling pathway from the Soft Coral Dendronephthya gigantea. J Nat Prod. 2018;81(11):2567–75.PubMedCrossRef Wu J, Xi Y, Huang L, Li G, Mao Q, Fang C, Shan T, Jiang W, Zhao M, He W, Dong J, Li X, Qiu P, Yan P. A steroid-type antioxidant targeting the Keap1/Nrf2/ARE signaling pathway from the Soft Coral Dendronephthya gigantea. J Nat Prod. 2018;81(11):2567–75.PubMedCrossRef
26.
go back to reference Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev. 2024;104(1):103–97.PubMedCrossRef Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev. 2024;104(1):103–97.PubMedCrossRef
27.
go back to reference Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr., Lerner RA, Kelly JW. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol. 2006;2(5):249–53.PubMedCrossRef Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr., Lerner RA, Kelly JW. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol. 2006;2(5):249–53.PubMedCrossRef
28.
go back to reference Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: applications for natural product efficacy with omics and systemic biology. Pharmacol Res. 2020;158:104877.PubMedCrossRef Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: applications for natural product efficacy with omics and systemic biology. Pharmacol Res. 2020;158:104877.PubMedCrossRef
29.
go back to reference Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun. 2021;92:221–31.CrossRef Franke M, Bieber M, Kraft P, Weber ANR, Stoll G, Schuhmann MK. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun. 2021;92:221–31.CrossRef
30.
go back to reference Tao T, Liu MZ, Chen MY, Luo Y, Wang C, Xu TT, Jiang YX, Guo YY, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: challenges and prospective. Pharmacol Therapeut. 2020;216:107695.CrossRef Tao T, Liu MZ, Chen MY, Luo Y, Wang C, Xu TT, Jiang YX, Guo YY, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: challenges and prospective. Pharmacol Therapeut. 2020;216:107695.CrossRef
31.
go back to reference Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, Liu JD, Wang X, Fan X, Dong Z. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine. 2022;102:154112.PubMedCrossRef Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, Liu JD, Wang X, Fan X, Dong Z. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine. 2022;102:154112.PubMedCrossRef
32.
go back to reference Zhang YH, Miao L, Peng Q, Fan XD, Song WT, Yang B, Zhang P, Liu GY, Liu JX. Parthenolide modulates cerebral ischemia-induced microglial polarization and alleviates neuroinflammatory injury via the RhoA/ROCK pathway. Phytomedicine. 2022;105:154373.PubMedCrossRef Zhang YH, Miao L, Peng Q, Fan XD, Song WT, Yang B, Zhang P, Liu GY, Liu JX. Parthenolide modulates cerebral ischemia-induced microglial polarization and alleviates neuroinflammatory injury via the RhoA/ROCK pathway. Phytomedicine. 2022;105:154373.PubMedCrossRef
33.
go back to reference Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993;13(8):3510–24.PubMedPubMedCentralCrossRef Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993;13(8):3510–24.PubMedPubMedCentralCrossRef
34.
go back to reference Goldberg MP, Strasser U, Dugan LL. Techniques for assessing neuroprotective drugs in Vitro. Int Rev Neurobiol. 1996;40(40):69–93.CrossRef Goldberg MP, Strasser U, Dugan LL. Techniques for assessing neuroprotective drugs in Vitro. Int Rev Neurobiol. 1996;40(40):69–93.CrossRef
35.
go back to reference René V, Bensasson VZ, Albena T, Dinkova-Kostova P, Talalay. Two-step mechanism of induction of the gene expression of a prototypic cancer-protective enzyme by diphenols. Chem Res Toxicol. 2008;21(4):805–12.CrossRef René V, Bensasson VZ, Albena T, Dinkova-Kostova P, Talalay. Two-step mechanism of induction of the gene expression of a prototypic cancer-protective enzyme by diphenols. Chem Res Toxicol. 2008;21(4):805–12.CrossRef
36.
go back to reference Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol. 2005;18(12):1917–26.PubMedCrossRef Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol. 2005;18(12):1917–26.PubMedCrossRef
37.
go back to reference Davies T, Wixted W, Coyle J, Jones C, Hearn K, McMenamin R, Norton D, Rich S, Richardson C, Saxty G, Willems H, Woolford A, Cottom J, Kou J, Yonchuk J, Feldser H, Sanchez Y, Foley J, Bolognese B, Logan G, Podolin P, Yan HX, Callahan J, Heightman T, Kerns J. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2 (KEAP1:NRF2) protein-protein interaction with high cell potency identified by fragment-based discovery. J Med Chem. 2016;59(8):3991–4006.PubMedCrossRef Davies T, Wixted W, Coyle J, Jones C, Hearn K, McMenamin R, Norton D, Rich S, Richardson C, Saxty G, Willems H, Woolford A, Cottom J, Kou J, Yonchuk J, Feldser H, Sanchez Y, Foley J, Bolognese B, Logan G, Podolin P, Yan HX, Callahan J, Heightman T, Kerns J. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2 (KEAP1:NRF2) protein-protein interaction with high cell potency identified by fragment-based discovery. J Med Chem. 2016;59(8):3991–4006.PubMedCrossRef
38.
go back to reference Jiang ZY, Lu MC, Xu LL, Yang TT, Xi MY, Xu XL, Guo XK, Zhang XJ, You QD, Sun HP. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis and structure-guided modification. J Med Chem. 2014;57(6):2736–45.PubMedCrossRef Jiang ZY, Lu MC, Xu LL, Yang TT, Xi MY, Xu XL, Guo XK, Zhang XJ, You QD, Sun HP. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis and structure-guided modification. J Med Chem. 2014;57(6):2736–45.PubMedCrossRef
39.
go back to reference Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: design, pharmacological properties and therapeutic potential. Med Res Rev. 2023;43(1):237–87.PubMedCrossRef Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: design, pharmacological properties and therapeutic potential. Med Res Rev. 2023;43(1):237–87.PubMedCrossRef
40.
go back to reference Warpsinski G, Smith MJ, Srivastava S, Keeley TP, Siow RCM, Fraser PA, Mann GE. Nrf2-regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: consequences for sulforaphane mediated protection against hypoxia-reoxygenation. Redox Biol. 2020;37:101708.PubMedPubMedCentralCrossRef Warpsinski G, Smith MJ, Srivastava S, Keeley TP, Siow RCM, Fraser PA, Mann GE. Nrf2-regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: consequences for sulforaphane mediated protection against hypoxia-reoxygenation. Redox Biol. 2020;37:101708.PubMedPubMedCentralCrossRef
41.
go back to reference Zgorzynska E, Dziedzic B, Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci. 2021;22(17):9592.PubMedPubMedCentralCrossRef Zgorzynska E, Dziedzic B, Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int J Mol Sci. 2021;22(17):9592.PubMedPubMedCentralCrossRef
42.
go back to reference Fan SS, Liu XY, Wang Y, Ren XY, Liu Y, Dong Y, Fan QQ, Wei J, Ma JM, Yu AX, et al. Thymus quinquecostatus celak. Ameliorates cerebral ischemia-reperfusion injury via dual antioxidant actions: activating Keap1/Nrf2/HO-1 signaling pathway and directly scavenging ROS. Phytomedicine. 2021;91:153673.PubMedCrossRef Fan SS, Liu XY, Wang Y, Ren XY, Liu Y, Dong Y, Fan QQ, Wei J, Ma JM, Yu AX, et al. Thymus quinquecostatus celak. Ameliorates cerebral ischemia-reperfusion injury via dual antioxidant actions: activating Keap1/Nrf2/HO-1 signaling pathway and directly scavenging ROS. Phytomedicine. 2021;91:153673.PubMedCrossRef
43.
go back to reference Sun Y, Xu LJ, Zheng DP, Wang J, Liu GD, Mo ZX, Liu C, Zhang WN, Yu JQ, Xing CG, et al. A potent phosphodiester Keap1-Nrf2 protein-protein interaction inhibitor as the efficient treatment of Alzheimer’s disease. Redox Biol. 2023;64:102793.PubMedPubMedCentralCrossRef Sun Y, Xu LJ, Zheng DP, Wang J, Liu GD, Mo ZX, Liu C, Zhang WN, Yu JQ, Xing CG, et al. A potent phosphodiester Keap1-Nrf2 protein-protein interaction inhibitor as the efficient treatment of Alzheimer’s disease. Redox Biol. 2023;64:102793.PubMedPubMedCentralCrossRef
44.
go back to reference Maiquan L, Tao X, Fei Z, Mengmeng W, Huaxin S, Xing X, Baiyi L. Neuroprotective effects of four phenylethanoid glycosides on H2O2-Induced apoptosis on PC12 cells via the Nrf2/ARE pathway. Int J Mol Sci. 2018;19(4):1135–51.CrossRef Maiquan L, Tao X, Fei Z, Mengmeng W, Huaxin S, Xing X, Baiyi L. Neuroprotective effects of four phenylethanoid glycosides on H2O2-Induced apoptosis on PC12 cells via the Nrf2/ARE pathway. Int J Mol Sci. 2018;19(4):1135–51.CrossRef
45.
go back to reference Gong X, Xu Y, Ren K, Bai XR, Zhang CH, Li MH. Phenylethanoid glycosides from protect rat pheochromocytoma (PC12) cells from hydrogen peroxide-induced cell injury. Biosci Biotech Bioch. 2019;83(12):2202–12.CrossRef Gong X, Xu Y, Ren K, Bai XR, Zhang CH, Li MH. Phenylethanoid glycosides from protect rat pheochromocytoma (PC12) cells from hydrogen peroxide-induced cell injury. Biosci Biotech Bioch. 2019;83(12):2202–12.CrossRef
Metadata
Title
Neuroprotective effect of acetoxypachydiol against oxidative stress through activation of the Keap1-Nrf2/HO-1 pathway
Authors
Yu Qi
Ge Liu
Shengjie Jin
Rong Jian
Ziqiang Zou
Chenjing Wang
Yuanlong Zhang
Min Zhao
Haoru Zhu
Pengcheng Yan
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2024
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-024-04474-6

Other articles of this Issue 1/2024

BMC Complementary Medicine and Therapies 1/2024 Go to the issue