Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 1/2006

01-03-2006

Neuronal Responses to Lemniscal Stimulation in Laminar Brain Slices of the Inferior Colliculus

Authors: Shobhana Sivaramakrishnan, Douglas L. Oliver

Published in: Journal of the Association for Research in Otolaryngology | Issue 1/2006

Login to get access

Abstract

The central nucleus of the inferior colliculus (ICC) receives inputs from all parts of the auditory brainstem and transmits the information to the forebrain. Fibrodendritic laminae of the ICC provide a structural basis for a tonotopic organization, and the interaction of inputs within a single layer is important for ICC processing. Transverse slice planes of the ICC sever the layers and many of the ascending axons that enter through the lateral lemniscus. Consequently, the activity initiated within a lamina by a pure lemniscal stimulus is not well characterized. Here, we use a slice plane that maintains the integrity of the laminae in ICC and allows the axons in the lateral lemniscus to be stimulated at a distance from the ICC. We examined both the postsynaptic currents and potentials of the same neurons to lemniscal stimuli in this laminar brain slice. Our main finding is that lemniscal stimulation evokes prolonged synaptic potentials in ICC neurons. Synaptic potential amplitudes and durations increase with lemniscal shock strength. In ∼50% of ICC neurons, the postsynaptic potential is equal in duration to the postsynaptic current, whereas in the remaining neurons it is three to four times longer. Synaptic responses to single shocks or shock trains exhibit plateau potentials that enable sustained firing in ICC neurons. Plateau potentials are evoked by N-methyl-d-aspartate (NMDA) receptor activation, and their amplitudes and durations are regulated by both NMDA-R and gamma-aminobutyric acid A (GABAA)-R activation. These data suggest that in the intact laminae of the ICC, lemniscal inputs initiate sustained firing through monosynaptic and polysynaptic NMDA-mediated synapses regulated by GABAA synapses.
Literature
go back to reference Avoli M, D'Antuono M, Louvel J, Kohling R, Biagini G, Pumain R, D'Arcangelo G, Tancredi V. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68:167–207, 2002.PubMedCrossRef Avoli M, D'Antuono M, Louvel J, Kohling R, Biagini G, Pumain R, D'Arcangelo G, Tancredi V. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68:167–207, 2002.PubMedCrossRef
go back to reference Bal R, Green GG, Rees A, Sanders DJ. Firing patterns of inferior colliculus neurons—histology and mechanism to change firing patterns in rat brain slices. Neurosci. Lett. 317:42–46, 2002.PubMedCrossRef Bal R, Green GG, Rees A, Sanders DJ. Firing patterns of inferior colliculus neurons—histology and mechanism to change firing patterns in rat brain slices. Neurosci. Lett. 317:42–46, 2002.PubMedCrossRef
go back to reference Burger RM, Pollak GD. Analysis of the role of inhibition in shaping responses to sinusoidally amplitude-modulated signals in the inferior colliculus. J Neurophysiol. 80:1686–1701, 1998PubMed Burger RM, Pollak GD. Analysis of the role of inhibition in shaping responses to sinusoidally amplitude-modulated signals in the inferior colliculus. J Neurophysiol. 80:1686–1701, 1998PubMed
go back to reference Caicedo A, Eybalin M. Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur. J. Neurosci. 11:51–74, 1999.PubMedCrossRef Caicedo A, Eybalin M. Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur. J. Neurosci. 11:51–74, 1999.PubMedCrossRef
go back to reference Casseday JH, Ehrlich D, Covey E. Neural measurement of sound duration: control by excitatory–inhibitory interactions in the inferior colliculus. J. Neurophysiol. 84:1475–1487, 2000.PubMed Casseday JH, Ehrlich D, Covey E. Neural measurement of sound duration: control by excitatory–inhibitory interactions in the inferior colliculus. J. Neurophysiol. 84:1475–1487, 2000.PubMed
go back to reference Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int. Rev. Neurobiol. 45:237–252, 2001.PubMedCrossRef Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int. Rev. Neurobiol. 45:237–252, 2001.PubMedCrossRef
go back to reference Covey E, Kauer JA, Casseday JH. Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. J. Neurosci. 16:3009–3018, 1996.PubMed Covey E, Kauer JA, Casseday JH. Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. J. Neurosci. 16:3009–3018, 1996.PubMed
go back to reference Dingledine R, Hynes MA, King GL. Involvement of N-methyl-d-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J. Physiol. 380:175–189, 1986.PubMed Dingledine R, Hynes MA, King GL. Involvement of N-methyl-d-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J. Physiol. 380:175–189, 1986.PubMed
go back to reference Faingold CL, Anderson CA, Randall ME. Stimulation or blockade of the dorsal nucleus of the lateral lemniscus alters binaural and tonic inhibition in contralateral inferior colliculus neurons. Hear Res. 69:98–106, 1993.PubMedCrossRef Faingold CL, Anderson CA, Randall ME. Stimulation or blockade of the dorsal nucleus of the lateral lemniscus alters binaural and tonic inhibition in contralateral inferior colliculus neurons. Hear Res. 69:98–106, 1993.PubMedCrossRef
go back to reference Gooler DM, Feng AS. Temporal coding in the frog auditory midbrain: the influence of duration and rise–fall time on the processing of complex amplitude-modulated stimuli. J. Neurophysiol. 67:1–22, 1992.PubMed Gooler DM, Feng AS. Temporal coding in the frog auditory midbrain: the influence of duration and rise–fall time on the processing of complex amplitude-modulated stimuli. J. Neurophysiol. 67:1–22, 1992.PubMed
go back to reference Jahnsen H, Llinas R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J. Physiol. 349:205–226, 1984.PubMed Jahnsen H, Llinas R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J. Physiol. 349:205–226, 1984.PubMed
go back to reference Kato N, Yoshimura, H. Reduced Mg2+ block of N-methyl-d-aspartate receptor-mediated synaptic potentials in developing visual cortex. Proc. Natl. Acad. Sci. USA 90:7114–7118, 1993.PubMedCrossRef Kato N, Yoshimura, H. Reduced Mg2+ block of N-methyl-d-aspartate receptor-mediated synaptic potentials in developing visual cortex. Proc. Natl. Acad. Sci. USA 90:7114–7118, 1993.PubMedCrossRef
go back to reference Khawaled R, Bruening-Wright A, Adelman JP, Maylie J. Bicuculline block of small-conductance calcium-activated potassium channels. Pflugers Arch. 438:314–321, 1999.PubMedCrossRef Khawaled R, Bruening-Wright A, Adelman JP, Maylie J. Bicuculline block of small-conductance calcium-activated potassium channels. Pflugers Arch. 438:314–321, 1999.PubMedCrossRef
go back to reference Kim YI, Chandler SH. NMDA-induced burst discharge in guinea pig trigeminal motoneurons in vitro. J. Neurophysiol. 74:334–346, 1995.PubMed Kim YI, Chandler SH. NMDA-induced burst discharge in guinea pig trigeminal motoneurons in vitro. J. Neurophysiol. 74:334–346, 1995.PubMed
go back to reference Koch U, Grothe B. Hyperpolarization-activated current (I h) in the inferior colliculus: distribution and contribution to temporal processing. J. Neurophysiol. 90:3679–3687, 2003.PubMedCrossRef Koch U, Grothe B. Hyperpolarization-activated current (I h) in the inferior colliculus: distribution and contribution to temporal processing. J. Neurophysiol. 90:3679–3687, 2003.PubMedCrossRef
go back to reference Kraushaar U, Backus KH. Characterization of GABA(A) and glycine receptors in neurons of the developing rat inferior colliculus. Pflugers Arch. 445:279–288, 2002.PubMedCrossRef Kraushaar U, Backus KH. Characterization of GABA(A) and glycine receptors in neurons of the developing rat inferior colliculus. Pflugers Arch. 445:279–288, 2002.PubMedCrossRef
go back to reference Kuwada S, Batra R, Yin TC, Oliver DL, Haberly LB, Stanford TR. Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J. Neurosci. 17:7565–7581, 1997.PubMed Kuwada S, Batra R, Yin TC, Oliver DL, Haberly LB, Stanford TR. Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J. Neurosci. 17:7565–7581, 1997.PubMed
go back to reference Langner G, Schreiner CE. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60:1799–1822, 1988.PubMed Langner G, Schreiner CE. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60:1799–1822, 1988.PubMed
go back to reference Le Beau FE, Rees A, Malmierca MS. Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J. Neurophysiol. 75:902–919, 1996.PubMed Le Beau FE, Rees A, Malmierca MS. Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J. Neurophysiol. 75:902–919, 1996.PubMed
go back to reference Li Y, Evans MS, Faingold CL. Inferior colliculus neuronal membrane and synaptic properties in genetically epilepsy-prone rats. Brain Res. 660:232–240, 1994.CrossRefPubMed Li Y, Evans MS, Faingold CL. Inferior colliculus neuronal membrane and synaptic properties in genetically epilepsy-prone rats. Brain Res. 660:232–240, 1994.CrossRefPubMed
go back to reference Li Y, Evans MS, Faingold CL. In vitro electrophysiology of neurons in subnuclei of rat inferior colliculus. Hear Res. 121:1–10, 1998.CrossRefPubMed Li Y, Evans MS, Faingold CL. In vitro electrophysiology of neurons in subnuclei of rat inferior colliculus. Hear Res. 121:1–10, 1998.CrossRefPubMed
go back to reference Li Y, Evans MS, Faingold CL. Synaptic response patterns of neurons in the cortex of rat inferior colliculus. Hear Res. 137:15–28, 1999.CrossRefPubMed Li Y, Evans MS, Faingold CL. Synaptic response patterns of neurons in the cortex of rat inferior colliculus. Hear Res. 137:15–28, 1999.CrossRefPubMed
go back to reference Loftus WC, Bishop DC, SaintMarie RL, Oliver DL. Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. J. Comp. Neurol. 472:330–344, 2004.CrossRefPubMed Loftus WC, Bishop DC, SaintMarie RL, Oliver DL. Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. J. Comp. Neurol. 472:330–344, 2004.CrossRefPubMed
go back to reference Ma CL, Kelly JB, Wu SH. AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus. Hear Res. 168:25–34, 2002a.CrossRefPubMed Ma CL, Kelly JB, Wu SH. AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus. Hear Res. 168:25–34, 2002a.CrossRefPubMed
go back to reference Ma CL, Kelly JB, Wu SH. Presynaptic modulation of GABAergic inhibition by GABA(B) receptors in the rat's inferior colliculus. Neuroscience 114:207–215, 2002b.CrossRefPubMed Ma CL, Kelly JB, Wu SH. Presynaptic modulation of GABAergic inhibition by GABA(B) receptors in the rat's inferior colliculus. Neuroscience 114:207–215, 2002b.CrossRefPubMed
go back to reference Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL. The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J. Comp. Neurol. 333:1–27, 1993.CrossRefPubMed Malmierca MS, Blackstad TW, Osen KK, Karagulle T, Molowny RL. The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J. Comp. Neurol. 333:1–27, 1993.CrossRefPubMed
go back to reference Moore DR, Kotak VC, Sanes DH. Commissural and lemniscal synaptic input to the gerbil inferior colliculus. J. Neurophysiol. 80:2229–2236, 1998.PubMed Moore DR, Kotak VC, Sanes DH. Commissural and lemniscal synaptic input to the gerbil inferior colliculus. J. Neurophysiol. 80:2229–2236, 1998.PubMed
go back to reference Morest DK, Oliver DL. The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J. Comp. Neurol. 222:209–236, 1984.CrossRefPubMed Morest DK, Oliver DL. The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J. Comp. Neurol. 222:209–236, 1984.CrossRefPubMed
go back to reference Nadler JV. The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res. 28:1649–1658, 2003.CrossRefPubMed Nadler JV. The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res. 28:1649–1658, 2003.CrossRefPubMed
go back to reference N'Gouemo P, Morad M. Ethanol withdrawal seizure susceptibility is associated with upregulation of L- and P-type Ca2+ channel currents in rat inferior colliculus neurons. Neuropharmacology 45:429–437, 2003.CrossRefPubMed N'Gouemo P, Morad M. Ethanol withdrawal seizure susceptibility is associated with upregulation of L- and P-type Ca2+ channel currents in rat inferior colliculus neurons. Neuropharmacology 45:429–437, 2003.CrossRefPubMed
go back to reference Oertel D. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3:2043–2053, 1983.PubMed Oertel D. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J. Neurosci. 3:2043–2053, 1983.PubMed
go back to reference Oliver DL. Ascending efferent projections of the superior olivary complex. Microsc. Res. Tech. 51:355–363, 2000.CrossRefPubMed Oliver DL. Ascending efferent projections of the superior olivary complex. Microsc. Res. Tech. 51:355–363, 2000.CrossRefPubMed
go back to reference Oliver DL, Huerta MF. Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy, 1st ed. Springer-Verlag, New York, pp 168–221, 1992. Oliver DL, Huerta MF. Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy, 1st ed. Springer-Verlag, New York, pp 168–221, 1992.
go back to reference Oliver DL, Beckius GE, Shneiderman A. Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J. Comp. Neurol. 360:17–32, 1995.CrossRefPubMed Oliver DL, Beckius GE, Shneiderman A. Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography. J. Comp. Neurol. 360:17–32, 1995.CrossRefPubMed
go back to reference Oliver DL, Ostapoff EM, Beckius GE. Direct innervation of identified tectothalamic neurons in the inferior colliculus by axons from the cochlear nucleus. Neuroscience 93:643–658, 1999.CrossRefPubMed Oliver DL, Ostapoff EM, Beckius GE. Direct innervation of identified tectothalamic neurons in the inferior colliculus by axons from the cochlear nucleus. Neuroscience 93:643–658, 1999.CrossRefPubMed
go back to reference Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J. Comp. Neurol. 303:75–100.CrossRefPubMed Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J. Comp. Neurol. 303:75–100.CrossRefPubMed
go back to reference Palombi PS, Caspary DM. GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons. J. Neurophysiol. 75:2211–2219, 1996. Palombi PS, Caspary DM. GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons. J. Neurophysiol. 75:2211–2219, 1996.
go back to reference Park TJ, Pollak GD. GABA shapes sensitivity to interaural intensity disparities in the mustache bat's inferior colliculus: Implications for encoding sound location. J. Neurosci. 13:2050–2067, 1993.PubMed Park TJ, Pollak GD. GABA shapes sensitivity to interaural intensity disparities in the mustache bat's inferior colliculus: Implications for encoding sound location. J. Neurosci. 13:2050–2067, 1993.PubMed
go back to reference Park TJ, Pollak GD. GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus. J. Neurosci. 13:5172–5187, 1993.PubMed Park TJ, Pollak GD. GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus. J. Neurosci. 13:5172–5187, 1993.PubMed
go back to reference Pedemonte M, Torterolo P, Velluti RA. In vivo intracellular characteristics of inferior colliculus neurons in guinea pigs. Brain Res. 759:24–31, 1997.CrossRefPubMed Pedemonte M, Torterolo P, Velluti RA. In vivo intracellular characteristics of inferior colliculus neurons in guinea pigs. Brain Res. 759:24–31, 1997.CrossRefPubMed
go back to reference Peruzzi D, Sivaramakrishnan S, Oliver DL. Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101:403–416, 2000.CrossRefPubMed Peruzzi D, Sivaramakrishnan S, Oliver DL. Identification of cell types in brain slices of the inferior colliculus. Neuroscience 101:403–416, 2000.CrossRefPubMed
go back to reference Pollak GD, Park TJ. The effects of GABAergic inhibition on monaural response properties of neurons in the mustache bat's inferior colliculus. Hear Res. 65:99–117, 1993.CrossRefPubMed Pollak GD, Park TJ. The effects of GABAergic inhibition on monaural response properties of neurons in the mustache bat's inferior colliculus. Hear Res. 65:99–117, 1993.CrossRefPubMed
go back to reference Ramoa AS, McCormick DA. Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse. J. Neurosci. 14:2098–2105, 1994.PubMed Ramoa AS, McCormick DA. Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse. J. Neurosci. 14:2098–2105, 1994.PubMed
go back to reference Rees A, Moller AR. Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear. Res. 10:301–330, 1983.CrossRefPubMed Rees A, Moller AR. Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear. Res. 10:301–330, 1983.CrossRefPubMed
go back to reference Riquelme R, SaldaÑa E, Osen KK, Ottersen OP, Merchán MA. Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. J. Comp. Neurol. 432:409–424, 2001.CrossRefPubMed Riquelme R, SaldaÑa E, Osen KK, Ottersen OP, Merchán MA. Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. J. Comp. Neurol. 432:409–424, 2001.CrossRefPubMed
go back to reference Saint Marie RL, Ostapoff EM, Morest DK, Wenthold RJ. Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J. Comp. Neurol. 279:382–396, 1989.CrossRefPubMed Saint Marie RL, Ostapoff EM, Morest DK, Wenthold RJ. Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J. Comp. Neurol. 279:382–396, 1989.CrossRefPubMed
go back to reference Schreiner CE, Langner, G. Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386, 1997.CrossRefPubMed Schreiner CE, Langner, G. Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386, 1997.CrossRefPubMed
go back to reference Schwindt PC, Crill WE. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. J. Neurophysiol. 79:2432–2446, 1998.PubMed Schwindt PC, Crill WE. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. J. Neurophysiol. 79:2432–2446, 1998.PubMed
go back to reference Shneiderman A, Chase, MB, Rockwood, JM, Benson, CG, Potashner, SJ. Evidence for a GABAergic projection from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. J. Neurochem. 60:72–82, 1993.PubMedCrossRef Shneiderman A, Chase, MB, Rockwood, JM, Benson, CG, Potashner, SJ. Evidence for a GABAergic projection from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. J. Neurochem. 60:72–82, 1993.PubMedCrossRef
go back to reference Sivaramakrishnan S, Oliver DL. Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J. Neurosci. 21:2861–2877, 2001.PubMed Sivaramakrishnan S, Oliver DL. Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J. Neurosci. 21:2861–2877, 2001.PubMed
go back to reference Sivaramakrishnan S, Sterbing-D'Angelo SJ, Filipovic B, D'Angelo, WR, Oliver, DL, Kuwada, S. GABA(A) synapses shape neuronal responses to sound intensity in the inferior colliculus. J. Neurosci. 24:5031–5043, 2004.CrossRefPubMed Sivaramakrishnan S, Sterbing-D'Angelo SJ, Filipovic B, D'Angelo, WR, Oliver, DL, Kuwada, S. GABA(A) synapses shape neuronal responses to sound intensity in the inferior colliculus. J. Neurosci. 24:5031–5043, 2004.CrossRefPubMed
go back to reference Smith PH. Anatomy and physiology of multipolar cells in the rat inferior collicular cortex using the in vitro brain slice technique. J. Neurosci. 12:3700–3715, 1992PubMed Smith PH. Anatomy and physiology of multipolar cells in the rat inferior collicular cortex using the in vitro brain slice technique. J. Neurosci. 12:3700–3715, 1992PubMed
go back to reference Torterolo P, Pedemonte M, Velluti RA. Intracellular in vivo recording of inferior colliculus auditory neurons from awake guinea-pigs. Arch. Ital. Biol. 134:57–64, 1995PubMed Torterolo P, Pedemonte M, Velluti RA. Intracellular in vivo recording of inferior colliculus auditory neurons from awake guinea-pigs. Arch. Ital. Biol. 134:57–64, 1995PubMed
go back to reference Wagner T. Lemniscal input to identified neurons of the central nucleus of mouse inferior colliculus: an intracellular brain slice study. Eur. J. Neurosci. 8:1231–1239, 1996.PubMedCrossRef Wagner T. Lemniscal input to identified neurons of the central nucleus of mouse inferior colliculus: an intracellular brain slice study. Eur. J. Neurosci. 8:1231–1239, 1996.PubMedCrossRef
go back to reference Wenzel A, Villa M, Mohler H, Benke D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J. Neurochem. 66:1240–1248, 1996.PubMedCrossRef Wenzel A, Villa M, Mohler H, Benke D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J. Neurochem. 66:1240–1248, 1996.PubMedCrossRef
go back to reference Wu SH, Ma CL, Kelly JB. Contribution of AMPA, NMDA, and GABA(A) receptors to temporal pattern of postsynaptic responses in the inferior colliculus of the rat. J. Neurosci. 24:4625–4634, 2004.CrossRefPubMed Wu SH, Ma CL, Kelly JB. Contribution of AMPA, NMDA, and GABA(A) receptors to temporal pattern of postsynaptic responses in the inferior colliculus of the rat. J. Neurosci. 24:4625–4634, 2004.CrossRefPubMed
go back to reference Wu SH, Ma CL, Sivaramakrishnan S, Oliver DL. Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hear. Res. 168:43–54, 2002.CrossRefPubMed Wu SH, Ma CL, Sivaramakrishnan S, Oliver DL. Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hear. Res. 168:43–54, 2002.CrossRefPubMed
go back to reference Zhang H, Kelly JB. AMPA and NMDA receptors regulate responses of neurons in the rat's inferior colliculus. J. Neurophysiol. 86:871–880, 2001.PubMed Zhang H, Kelly JB. AMPA and NMDA receptors regulate responses of neurons in the rat's inferior colliculus. J. Neurophysiol. 86:871–880, 2001.PubMed
Metadata
Title
Neuronal Responses to Lemniscal Stimulation in Laminar Brain Slices of the Inferior Colliculus
Authors
Shobhana Sivaramakrishnan
Douglas L. Oliver
Publication date
01-03-2006
Publisher
Springer-Verlag
Published in
Journal of the Association for Research in Otolaryngology / Issue 1/2006
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-005-0017-4

Other articles of this Issue 1/2006

Journal of the Association for Research in Otolaryngology 1/2006 Go to the issue