Skip to main content
Top
Published in: Neurocritical Care 2/2016

Open Access 01-10-2016 | Practical Pearl

Neuroglucopenia and Metabolic Distress in Two Patients with Viral Meningoencephalitis: A Microdialysis Study

Authors: Mario Kofler, Alois Schiefecker, Ronny Beer, Florian Sohm, Gregor Broessner, Paul Rhomberg, Peter Lackner, Bettina Pfausler, Claudius Thomé, Erich Schmutzhard, Raimund Helbok

Published in: Neurocritical Care | Issue 2/2016

Login to get access

Abstract

Introduction

Viral encephalitis is an emerging disease requiring intensive care management in severe cases. Underlying pathophysiologic mechanisms are incompletely understood and may be elucidated using invasive multimodal neuromonitoring techniques in humans.

Methods

Two otherwise healthy patients were admitted to our neurological intensive care unit with altered level of consciousness necessitating mechanical ventilation. Brain imaging and laboratory workup suggested viral encephalitis in both patients. Invasive neuromonitoring was initiated when head computed tomography revealed generalized brain edema, including monitoring of intracranial pressure, brain metabolism (cerebral microdialysis; CMD), brain tissue oxygen tension (in one patient), and cerebral blood flow (in one patient).

Results

Brain metabolism revealed episodes of severe neuroglucopenia (brain glucose <0.7 mM/l) in both patients, which were not attributable to decreased cerebral perfusion or hypoglycemia. CMD-glucose levels changed depending on variations in insulin therapy, nutrition, and systemic glucose administration. The metabolic profile, moreover, showed a pattern of non-ischemic metabolic distress suggestive for mitochondrial dysfunction. Both patients had a prolonged but favorable clinical course and improved to a modified Rankin Scale Score of 1 and 0 three months later.

Conclusion

Invasive multimodal neuromonitoring is feasible in poor-grade patients with viral meningoencephalitis and may help understand pathophysiologic mechanisms associated with secondary brain injury. The detection of neuroglucopenia and mitochondrial dysfunction may serve as treatment targets in the future.
Literature
1.
go back to reference Venkatesan A, Tunkel AR, Bloch KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013;57:1114–28.CrossRefPubMedPubMedCentral Venkatesan A, Tunkel AR, Bloch KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013;57:1114–28.CrossRefPubMedPubMedCentral
3.
go back to reference Solomon T, Michael BD, Smith PE, et al. Management of suspected viral encephalitis in adults—Association of British Neurologists and British Infection Association National Guidelines. J Infect. 2012;64:347–73.CrossRefPubMed Solomon T, Michael BD, Smith PE, et al. Management of suspected viral encephalitis in adults—Association of British Neurologists and British Infection Association National Guidelines. J Infect. 2012;64:347–73.CrossRefPubMed
4.
go back to reference Kumar G, Kalita J, Misra UK. Raised intracranial pressure in acute viral encephalitis. Clin Neurol Neurosurg. 2009;111:399–406.CrossRefPubMed Kumar G, Kalita J, Misra UK. Raised intracranial pressure in acute viral encephalitis. Clin Neurol Neurosurg. 2009;111:399–406.CrossRefPubMed
5.
go back to reference Glaser CA, Gilliam S, Honarmand S, et al. Refractory status epilepticus in suspect encephalitis. Neurocrit Care. 2008;9:74–82.CrossRefPubMed Glaser CA, Gilliam S, Honarmand S, et al. Refractory status epilepticus in suspect encephalitis. Neurocrit Care. 2008;9:74–82.CrossRefPubMed
6.
go back to reference Helbok R, Olson DM, Le Roux PD, Vespa P, The Participants in the International Multidisciplinary Consensus Conference on Multimodality M. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care. 2014;Suppl 2: S85–94.CrossRef Helbok R, Olson DM, Le Roux PD, Vespa P, The Participants in the International Multidisciplinary Consensus Conference on Multimodality M. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care. 2014;Suppl 2: S85–94.CrossRef
7.
go back to reference Poulsen FR, Schulz M, Jacobsen A, et al. Bedside evaluation of cerebral energy metabolism in severe community-acquired bacterial meningitis. Neurocrit Care. 2015;22:221–8.CrossRefPubMed Poulsen FR, Schulz M, Jacobsen A, et al. Bedside evaluation of cerebral energy metabolism in severe community-acquired bacterial meningitis. Neurocrit Care. 2015;22:221–8.CrossRefPubMed
8.
go back to reference Gliemroth J, Bahlmann L, Klaus S, Klohn A, Arnold H. Long-time microdialysis in a patient with meningoencephalitis. Clin Neurol Neurosurg. 2002;105:27–31.CrossRefPubMed Gliemroth J, Bahlmann L, Klaus S, Klohn A, Arnold H. Long-time microdialysis in a patient with meningoencephalitis. Clin Neurol Neurosurg. 2002;105:27–31.CrossRefPubMed
9.
go back to reference Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U. Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol. 2010;4:61.CrossRefPubMedPubMedCentral Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U. Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol. 2010;4:61.CrossRefPubMedPubMedCentral
10.
go back to reference Silva da Costa L, Pereira da Silva AP, Da Poian AT, El-Bacha T. Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death. PLoS One. 2012;7:e33871.CrossRefPubMedPubMedCentral Silva da Costa L, Pereira da Silva AP, Da Poian AT, El-Bacha T. Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death. PLoS One. 2012;7:e33871.CrossRefPubMedPubMedCentral
11.
go back to reference Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134:484–94.CrossRefPubMed Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134:484–94.CrossRefPubMed
12.
go back to reference Schmidt JM, Ko SB, Helbok R, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1351–6.CrossRefPubMedPubMedCentral Schmidt JM, Ko SB, Helbok R, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1351–6.CrossRefPubMedPubMedCentral
13.
go back to reference El-Bacha T, Da Poian AT. Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol. 2013;45:41–6.CrossRefPubMed El-Bacha T, Da Poian AT. Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol. 2013;45:41–6.CrossRefPubMed
14.
go back to reference Nielsen TH, Schalen W, Stahl N, Toft P, Reinstrup P, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction after malignant middle cerebral artery infarction. Neurocrit Care. 2014;21(1):35–42.CrossRefPubMed Nielsen TH, Schalen W, Stahl N, Toft P, Reinstrup P, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction after malignant middle cerebral artery infarction. Neurocrit Care. 2014;21(1):35–42.CrossRefPubMed
15.
go back to reference Jacobsen A, Nielsen TH, Nilsson O, Schalen W, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand. 2014;130:156–63.CrossRefPubMed Jacobsen A, Nielsen TH, Nilsson O, Schalen W, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand. 2014;130:156–63.CrossRefPubMed
17.
go back to reference Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993;13:3510–24.PubMed Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993;13:3510–24.PubMed
18.
go back to reference Helbok R, Ko SB, Schmidt JM, et al. Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke. 2011;42:1534–9.CrossRefPubMed Helbok R, Ko SB, Schmidt JM, et al. Global cerebral edema and brain metabolism after subarachnoid hemorrhage. Stroke. 2011;42:1534–9.CrossRefPubMed
19.
go back to reference Schmidt JM, Claassen J, Ko SB, et al. Nutritional support and brain tissue glucose metabolism in poor-grade SAH: a retrospective observational study. Crit Care. 2012;16:R15.CrossRefPubMedPubMedCentral Schmidt JM, Claassen J, Ko SB, et al. Nutritional support and brain tissue glucose metabolism in poor-grade SAH: a retrospective observational study. Crit Care. 2012;16:R15.CrossRefPubMedPubMedCentral
20.
go back to reference Anthony K, Reed LJ, Dunn JT, et al. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes. 2006;55(11):2986–92.CrossRefPubMed Anthony K, Reed LJ, Dunn JT, et al. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes. 2006;55(11):2986–92.CrossRefPubMed
21.
22.
go back to reference Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.CrossRefPubMedPubMedCentral Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.CrossRefPubMedPubMedCentral
23.
go back to reference Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.CrossRefPubMedPubMedCentral Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.CrossRefPubMedPubMedCentral
24.
go back to reference Hu W, Guan LS, Dang XB, Ren PY, Zhang YL. Small-molecule inhibitors at the PSD-95/nNOS interface attenuate MPP(+)-induced neuronal injury through Sirt3 mediated inhibition of mitochondrial dysfunction. Neurochem Int. 2014;79:57–64.CrossRefPubMed Hu W, Guan LS, Dang XB, Ren PY, Zhang YL. Small-molecule inhibitors at the PSD-95/nNOS interface attenuate MPP(+)-induced neuronal injury through Sirt3 mediated inhibition of mitochondrial dysfunction. Neurochem Int. 2014;79:57–64.CrossRefPubMed
25.
go back to reference Yang W, Chen X, Pan J, et al. Malibatol A protects against brain injury through reversing mitochondrial dysfunction in experimental stroke. Neurochem Int. 2014;80C:33–40. Yang W, Chen X, Pan J, et al. Malibatol A protects against brain injury through reversing mitochondrial dysfunction in experimental stroke. Neurochem Int. 2014;80C:33–40.
26.
go back to reference Hwang JH, Lee JH, Lee KH, et al. Cyclosporine A attenuates hypoxic-ischemic brain injury in newborn rats. Brain Res. 2010;1359:208–15.CrossRefPubMed Hwang JH, Lee JH, Lee KH, et al. Cyclosporine A attenuates hypoxic-ischemic brain injury in newborn rats. Brain Res. 2010;1359:208–15.CrossRefPubMed
27.
go back to reference Helbok R, Kurtz P, Schmidt JM, et al. Effect of mannitol on brain metabolism and tissue oxygenation in severe haemorrhagic stroke. J Neurol Neurosurg Psychiatry. 2011;82:378–83.CrossRefPubMed Helbok R, Kurtz P, Schmidt JM, et al. Effect of mannitol on brain metabolism and tissue oxygenation in severe haemorrhagic stroke. J Neurol Neurosurg Psychiatry. 2011;82:378–83.CrossRefPubMed
28.
go back to reference Canal CE, McNay EC, Gold PE. Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine-xylazine: an in vivo microdialysis study. Physiol Behav. 2005;84:245–50.CrossRefPubMed Canal CE, McNay EC, Gold PE. Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine-xylazine: an in vivo microdialysis study. Physiol Behav. 2005;84:245–50.CrossRefPubMed
29.
go back to reference Tanguy M, Seguin P, Laviolle B, Bleichner JP, Morandi X, Malledant Y. Cerebral microdialysis effects of propofol versus midazolam in severe traumatic brain injury. J Neurotrauma. 2012;29:1105–10.CrossRefPubMed Tanguy M, Seguin P, Laviolle B, Bleichner JP, Morandi X, Malledant Y. Cerebral microdialysis effects of propofol versus midazolam in severe traumatic brain injury. J Neurotrauma. 2012;29:1105–10.CrossRefPubMed
30.
go back to reference Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.CrossRefPubMed Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.CrossRefPubMed
31.
go back to reference Schiefecker AJ, Beer R, Broessner G, Kofler M, Schmutzhard E, Helbok R. Can therapeutic hypothermia be guided by advanced neuromonitoring in neurocritical care patients? A review. Ther Hypotherm Temp Manag. 2015;5:126–34.CrossRef Schiefecker AJ, Beer R, Broessner G, Kofler M, Schmutzhard E, Helbok R. Can therapeutic hypothermia be guided by advanced neuromonitoring in neurocritical care patients? A review. Ther Hypotherm Temp Manag. 2015;5:126–34.CrossRef
Metadata
Title
Neuroglucopenia and Metabolic Distress in Two Patients with Viral Meningoencephalitis: A Microdialysis Study
Authors
Mario Kofler
Alois Schiefecker
Ronny Beer
Florian Sohm
Gregor Broessner
Paul Rhomberg
Peter Lackner
Bettina Pfausler
Claudius Thomé
Erich Schmutzhard
Raimund Helbok
Publication date
01-10-2016
Publisher
Springer US
Published in
Neurocritical Care / Issue 2/2016
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-016-0272-8

Other articles of this Issue 2/2016

Neurocritical Care 2/2016 Go to the issue