Skip to main content
Top
Published in: Molecular Autism 1/2017

Open Access 01-12-2017 | Research

Neurogenetic analysis of childhood disintegrative disorder

Authors: Abha R. Gupta, Alexander Westphal, Daniel Y. J. Yang, Catherine A. W. Sullivan, Jeffrey Eilbott, Samir Zaidi, Avery Voos, Brent C. Vander Wyk, Pam Ventola, Zainulabedin Waqar, Thomas V. Fernandez, A. Gulhan Ercan-Sencicek, Michael F. Walker, Murim Choi, Allison Schneider, Tammy Hedderly, Gillian Baird, Hannah Friedman, Cara Cordeaux, Alexandra Ristow, Frederick Shic, Fred R. Volkmar, Kevin A. Pelphrey

Published in: Molecular Autism | Issue 1/2017

Login to get access

Abstract

Background

Childhood disintegrative disorder (CDD) is a rare form of autism spectrum disorder (ASD) of unknown etiology. It is characterized by late-onset regression leading to significant intellectual disability (ID) and severe autism. Although there are phenotypic differences between CDD and other forms of ASD, it is unclear if there are neurobiological differences.

Methods

We pursued a multidisciplinary study of CDD (n = 17) and three comparison groups: low-functioning ASD (n = 12), high-functioning ASD (n = 50), and typically developing (n = 26) individuals. We performed whole-exome sequencing (WES), copy number variant (CNV), and gene expression analyses of CDD and, on subsets of each cohort, non-sedated functional magnetic resonance imaging (fMRI) while viewing socioemotional (faces) and non-socioemotional (houses) stimuli and eye tracking while viewing emotional faces.

Results

We observed potential differences between CDD and other forms of ASD. WES and CNV analyses identified one or more rare de novo, homozygous, and/or hemizygous (mother-to-son transmission on chrX) variants for most probands that were not shared by unaffected sibling controls. There were no clearly deleterious variants or highly recurrent candidate genes. Candidate genes that were found to be most conserved at variant position and most intolerant of variation, such as TRRAP, ZNF236, and KIAA2018, play a role or may be involved in transcription. Using the human BrainSpan transcriptome dataset, CDD candidate genes were found to be more highly expressed in non-neocortical regions than neocortical regions. This expression profile was similar to that of an independent cohort of ASD probands with regression. The non-neocortical regions overlapped with those identified by fMRI as abnormally hyperactive in response to viewing faces, such as the thalamus, cerebellum, caudate, and hippocampus. Eye-tracking analysis showed that, among individuals with ASD, subjects with CDD focused on eyes the most when shown pictures of faces.

Conclusions

Given that cohort sizes were limited by the rarity of CDD, and the challenges of conducting non-sedated fMRI and eye tracking in subjects with ASD and significant ID, this is an exploratory study designed to investigate the neurobiological features of CDD. In addition to reporting the first multimodal analysis of CDD, a combination of fMRI and eye-tracking analyses are being presented for the first time for low-functioning individuals with ASD. Our results suggest differences between CDD and other forms of ASD on the neurobiological as well as clinical level.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Autism spectrum disorder. In: Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Washington: American Psychiatric Association; 2013. p. 50–9.CrossRef American Psychiatric Association. Autism spectrum disorder. In: Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Washington: American Psychiatric Association; 2013. p. 50–9.CrossRef
2.
go back to reference Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943;2:217–50. Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943;2:217–50.
3.
go back to reference Heller T. Dementia infantilis. Zeitschrift fur die Erforschung und Behandlung des Jugenlichen, Schwachsinns. 1908;2:17–28. Heller T. Dementia infantilis. Zeitschrift fur die Erforschung und Behandlung des Jugenlichen, Schwachsinns. 1908;2:17–28.
4.
go back to reference Westphal A, Schelinski S, Volkmar F, Pelphrey K. Revisiting regression in autism: Heller’s dementia infantilis. J Autism Dev Disord. 2013;43:265–71.CrossRefPubMed Westphal A, Schelinski S, Volkmar F, Pelphrey K. Revisiting regression in autism: Heller’s dementia infantilis. J Autism Dev Disord. 2013;43:265–71.CrossRefPubMed
5.
go back to reference World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.
6.
go back to reference American Psychiatric Association. Pervasive Developmental Disorders. In: Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. Washington: American Psychiatric Association; 1994. p. 65–71. American Psychiatric Association. Pervasive Developmental Disorders. In: Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. Washington: American Psychiatric Association; 1994. p. 65–71.
7.
go back to reference Hendry CN. Childhood disintegrative disorder: should it be considered a distinct diagnosis? Clin Psychol Rev. 2000;20:77–90.CrossRefPubMed Hendry CN. Childhood disintegrative disorder: should it be considered a distinct diagnosis? Clin Psychol Rev. 2000;20:77–90.CrossRefPubMed
8.
go back to reference Rosman NP, Bergia BM. Childhood disintegrative disorder: distinction from autistic disorder and predictors of outcome. J Child Neurol. 2013;28:1587–98.CrossRefPubMed Rosman NP, Bergia BM. Childhood disintegrative disorder: distinction from autistic disorder and predictors of outcome. J Child Neurol. 2013;28:1587–98.CrossRefPubMed
9.
go back to reference Mouridsen SE, Rich B, Isager T. A comparative study of genetic and neurobiological findings in disintegrative psychosis and infantile autism. Psychiatry Clin Neurosci. 2000;54:441–6.CrossRefPubMed Mouridsen SE, Rich B, Isager T. A comparative study of genetic and neurobiological findings in disintegrative psychosis and infantile autism. Psychiatry Clin Neurosci. 2000;54:441–6.CrossRefPubMed
10.
go back to reference Volkmar FR, Cohen DJ. Disintegrative disorder or “late onset” autism. J Child Psychol Psychiatry. 1989;30:717–24.CrossRefPubMed Volkmar FR, Cohen DJ. Disintegrative disorder or “late onset” autism. J Child Psychol Psychiatry. 1989;30:717–24.CrossRefPubMed
11.
go back to reference Volkmar FR, Rutter M. Childhood disintegrative disorder: results of the DSM-IV autism field trial. J Am Acad Child Adolesc Psychiatry. 1995;34:1092–5.CrossRefPubMed Volkmar FR, Rutter M. Childhood disintegrative disorder: results of the DSM-IV autism field trial. J Am Acad Child Adolesc Psychiatry. 1995;34:1092–5.CrossRefPubMed
13.
go back to reference Malhotra S, Gupta N. Childhood disintegrative disorder: re-examination of the current concept. Eur Child Adolesc Psychiatry. 2002;11:108–14.CrossRefPubMed Malhotra S, Gupta N. Childhood disintegrative disorder: re-examination of the current concept. Eur Child Adolesc Psychiatry. 2002;11:108–14.CrossRefPubMed
14.
go back to reference Kurita H, Osada H, Miyake Y. External validity of childhood disintegrative disorder in comparison with autistic disorder. J Autism Dev Disord. 2004;34:355–62.CrossRefPubMed Kurita H, Osada H, Miyake Y. External validity of childhood disintegrative disorder in comparison with autistic disorder. J Autism Dev Disord. 2004;34:355–62.CrossRefPubMed
15.
go back to reference Homan KJ, Mellon MW, Houlihan D, Katusic MZ. Brief report: childhood disintegrative disorder: a brief examination of eight case studies. J Autism Dev Disord. 2011;41:497–504.CrossRefPubMed Homan KJ, Mellon MW, Houlihan D, Katusic MZ. Brief report: childhood disintegrative disorder: a brief examination of eight case studies. J Autism Dev Disord. 2011;41:497–504.CrossRefPubMed
16.
go back to reference Barger BD, Campbell JM, McDonough JD. Prevalence and onset of regression within autism spectrum disorders: a meta-analytic review. J Autism Dev Disord. 2013;43:817–28.CrossRefPubMed Barger BD, Campbell JM, McDonough JD. Prevalence and onset of regression within autism spectrum disorders: a meta-analytic review. J Autism Dev Disord. 2013;43:817–28.CrossRefPubMed
17.
go back to reference Kurita H, Koyama T, Setoya Y, Shimizu K, Osada H. Validity of childhood disintegrative disorder apart from autistic disorder with speech loss. Eur Child Adolesc Psychiatry. 2004;13:221–6.CrossRefPubMed Kurita H, Koyama T, Setoya Y, Shimizu K, Osada H. Validity of childhood disintegrative disorder apart from autistic disorder with speech loss. Eur Child Adolesc Psychiatry. 2004;13:221–6.CrossRefPubMed
18.
go back to reference Baio J. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63:1–21. Baio J. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63:1–21.
19.
21.
go back to reference Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, et al. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 2009;168:242–9.CrossRefPubMedPubMedCentral Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, et al. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 2009;168:242–9.CrossRefPubMedPubMedCentral
22.
go back to reference De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.CrossRefPubMedPubMedCentral De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.CrossRefPubMedPubMedCentral
23.
go back to reference Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.CrossRefPubMedPubMedCentral Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.CrossRefPubMedPubMedCentral
24.
go back to reference Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.CrossRefPubMedPubMedCentral Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15:133–41.CrossRefPubMed Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15:133–41.CrossRefPubMed
27.
go back to reference Bunik V, Kaehne T, Degtyarev D, Shcherbakova T, Reiser G. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. FEBS J. 2008;275:4990–5006.CrossRefPubMed Bunik V, Kaehne T, Degtyarev D, Shcherbakova T, Reiser G. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. FEBS J. 2008;275:4990–5006.CrossRefPubMed
28.
go back to reference Allison T, Ginter H, McCarthy G, Nobre AC, Puce A, Luby M, et al. Face recognition in human extrastriate cortex. J Neurophysiol. 1994;71:821–5.PubMed Allison T, Ginter H, McCarthy G, Nobre AC, Puce A, Luby M, et al. Face recognition in human extrastriate cortex. J Neurophysiol. 1994;71:821–5.PubMed
29.
go back to reference Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17:4302–11.PubMed Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17:4302–11.PubMed
30.
go back to reference Pitcher D, Walsh V, Duchaine B. The role of the occipital face area in the cortical face perception network. Exp Brain Res. 2011;209:481–93.CrossRefPubMed Pitcher D, Walsh V, Duchaine B. The role of the occipital face area in the cortical face perception network. Exp Brain Res. 2011;209:481–93.CrossRefPubMed
31.
go back to reference Schultz RT, Gauthier I, Klin A, Fulbright RK, Anderson AW, Volkmar F, et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry. 2000;57:331–40.CrossRefPubMed Schultz RT, Gauthier I, Klin A, Fulbright RK, Anderson AW, Volkmar F, et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry. 2000;57:331–40.CrossRefPubMed
32.
go back to reference Pelphrey KA, Sasson NJ, Reznick JS, Paul G, Goldman BD, Piven J. Visual scanning of faces in autism. J Autism Dev Disord. 2002;32:249–61.CrossRefPubMed Pelphrey KA, Sasson NJ, Reznick JS, Paul G, Goldman BD, Piven J. Visual scanning of faces in autism. J Autism Dev Disord. 2002;32:249–61.CrossRefPubMed
33.
go back to reference Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59:809–16.CrossRefPubMed Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59:809–16.CrossRefPubMed
34.
go back to reference Papagiannopoulou EA, Chitty KM, Hermens DF, Hickie IB, Lagopoulos J. A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. Soc Neurosci. 2014;9:610–32.PubMed Papagiannopoulou EA, Chitty KM, Hermens DF, Hickie IB, Lagopoulos J. A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. Soc Neurosci. 2014;9:610–32.PubMed
35.
go back to reference Campbell DJ, Shic F, Macari S, Chawarska K. Gaze response to dyadic bids at 2 years related to outcomes at 3 years in autism spectrum disorders: a subtyping analysis. J Autism Dev Disord. 2014;44:431–42.CrossRefPubMedPubMedCentral Campbell DJ, Shic F, Macari S, Chawarska K. Gaze response to dyadic bids at 2 years related to outcomes at 3 years in autism spectrum disorders: a subtyping analysis. J Autism Dev Disord. 2014;44:431–42.CrossRefPubMedPubMedCentral
36.
go back to reference Norbury CF, Brock J, Cragg L, Einav S, Griffiths H, Nation K. Eye-movement patterns are associated with communicative competence in autistic spectrum disorders. J Child Psychol Psychiatry. 2009;50:834–42.CrossRefPubMed Norbury CF, Brock J, Cragg L, Einav S, Griffiths H, Nation K. Eye-movement patterns are associated with communicative competence in autistic spectrum disorders. J Child Psychol Psychiatry. 2009;50:834–42.CrossRefPubMed
37.
go back to reference Lewkowicz DJ, Hansen-Tift AM. Infants deploy selective attention to the mouth of a talking face when learning speech. Proc Natl Acad Sci U S A. 2012;109:1431–6.CrossRefPubMedPubMedCentral Lewkowicz DJ, Hansen-Tift AM. Infants deploy selective attention to the mouth of a talking face when learning speech. Proc Natl Acad Sci U S A. 2012;109:1431–6.CrossRefPubMedPubMedCentral
38.
go back to reference Norbury CF, Griffiths H, Nation K. Sound before meaning: word learning in autistic disorders. Neuropsychologia. 2010;48:4012–9.CrossRefPubMed Norbury CF, Griffiths H, Nation K. Sound before meaning: word learning in autistic disorders. Neuropsychologia. 2010;48:4012–9.CrossRefPubMed
39.
go back to reference Morton J, Johnson MH. CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol Rev. 1991;98:164–81.CrossRefPubMed Morton J, Johnson MH. CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol Rev. 1991;98:164–81.CrossRefPubMed
40.
41.
42.
go back to reference Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nature. 2009;41:535–43. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nature. 2009;41:535–43.
43.
go back to reference Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.CrossRefPubMed Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.CrossRefPubMed
44.
go back to reference Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP, et al. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 2016;21:133–48.CrossRefPubMed Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP, et al. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 2016;21:133–48.CrossRefPubMed
45.
go back to reference Kirov G, Rees E, Walters JTR, Escott-Price V, Georgieva L, Richards AL, et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry. 2014;75:378–85.CrossRefPubMed Kirov G, Rees E, Walters JTR, Escott-Price V, Georgieva L, Richards AL, et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry. 2014;75:378–85.CrossRefPubMed
46.
go back to reference Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet. 2010;87:229–36.CrossRefPubMedPubMedCentral Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC, et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet. 2010;87:229–36.CrossRefPubMedPubMedCentral
47.
go back to reference Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.CrossRefPubMed Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.CrossRefPubMed
48.
go back to reference Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. 2012;44:1365–9.CrossRefPubMedPubMedCentral Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. 2012;44:1365–9.CrossRefPubMedPubMedCentral
49.
go back to reference Fitzgerald TW, Gerety SS, Jones WD, van Kogelenberg M, King DA, McRae J, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–8.CrossRef Fitzgerald TW, Gerety SS, Jones WD, van Kogelenberg M, King DA, McRae J, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–8.CrossRef
50.
go back to reference Ahn K, Gotay N, Andersen TM, Anvari AA, Gochman P, Lee Y, et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol Psychiatry. 2014;19:568–72.CrossRefPubMed Ahn K, Gotay N, Andersen TM, Anvari AA, Gochman P, Lee Y, et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol Psychiatry. 2014;19:568–72.CrossRefPubMed
51.
go back to reference Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, MacArthur DG, et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron. 2013;77:235–42.CrossRefPubMedPubMedCentral Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, MacArthur DG, et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron. 2013;77:235–42.CrossRefPubMedPubMedCentral
52.
go back to reference Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Henrion E, et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry. 2011;16:867–80.CrossRefPubMed Piton A, Gauthier J, Hamdan FF, Lafreniere RG, Yang Y, Henrion E, et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry. 2011;16:867–80.CrossRefPubMed
53.
go back to reference Niranjan TS, Skinner C, May M, Turner T, Rose R, Stevenson R, et al. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes. PLoS One. 2015;10:e0116454.CrossRefPubMedPubMedCentral Niranjan TS, Skinner C, May M, Turner T, Rose R, Stevenson R, et al. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes. PLoS One. 2015;10:e0116454.CrossRefPubMedPubMedCentral
54.
go back to reference Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.CrossRefPubMedPubMedCentral Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.CrossRefPubMedPubMedCentral
55.
go back to reference de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–9.CrossRefPubMed de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–9.CrossRefPubMed
Metadata
Title
Neurogenetic analysis of childhood disintegrative disorder
Authors
Abha R. Gupta
Alexander Westphal
Daniel Y. J. Yang
Catherine A. W. Sullivan
Jeffrey Eilbott
Samir Zaidi
Avery Voos
Brent C. Vander Wyk
Pam Ventola
Zainulabedin Waqar
Thomas V. Fernandez
A. Gulhan Ercan-Sencicek
Michael F. Walker
Murim Choi
Allison Schneider
Tammy Hedderly
Gillian Baird
Hannah Friedman
Cara Cordeaux
Alexandra Ristow
Frederick Shic
Fred R. Volkmar
Kevin A. Pelphrey
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2017
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-017-0133-0

Other articles of this Issue 1/2017

Molecular Autism 1/2017 Go to the issue