Skip to main content
Top

05-05-2024 | Neurofibromatosis Type 1 | Research

Low-grade glioma in children with neurofibromatosis type 1: surveillance, treatment indications, management, and future directions

Authors: Chelsea Kotch, Peter de Blank, David H. Gutmann, Michael J. Fisher

Published in: Child's Nervous System

Login to get access

Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome characterized by the development of both central and peripheral nervous system tumors. Low-grade glioma (LGG) is the most prevalent central nervous system tumor occurring in children with NF1, arising most frequently within the optic pathway, followed by the brainstem. Historically, treatment of NF1-LGG has been limited to conventional cytotoxic chemotherapy and surgery. Despite treatment with chemotherapy, a subset of children with NF1-LGG fail initial therapy, have a continued decline in function, or recur. The recent development of several preclinical models has allowed for the identification of novel, molecularly targeted therapies. At present, exploration of these novel precision-based therapies is ongoing in the preclinical setting and through larger, collaborative clinical trials. Herein, we review the approach to surveillance and management of NF1-LGG in children and discuss upcoming novel therapies and treatment protocols.
Literature
1.
go back to reference Miller DT, Freedenberg D, Schorry E, Ullrich NJ, Viskochil D, Korf BR (2019) Coucil on genetics; American college of medical genetics and genomics. Health Supervision for Children With Neurofibromatosis Type 1. Pediatrics 143(5):e20190660PubMedCrossRef Miller DT, Freedenberg D, Schorry E, Ullrich NJ, Viskochil D, Korf BR (2019) Coucil on genetics; American college of medical genetics and genomics. Health Supervision for Children With Neurofibromatosis Type 1. Pediatrics 143(5):e20190660PubMedCrossRef
2.
go back to reference Koczkowska M, Chen Y, Callens T, Gomes A, Sharp A, Johnson S, Hsiao MC, Chen Z, Balasubramanian M, Barnett CP, Becker TA, Ben-Shachar S, Bertola DR, Blakeley JO, Burkitt-Wright EMM, Callaway A, Crenshaw M, Cunha KS, Cunningham M, D’Agostino MD, Dahan K, De Luca A, Destree A, Dhamija R, Eoli M, Evans DGR, Galvin-Parton P, George-Abraham JK, Gripp KW, Guevara-Campos J, Hanchard NA, Hernandez-Chico C, Immken L, Janssens S, Jones KJ, Keena BA, Kochhar A, Liebelt J, Martir-Negron A, Mahoney MJ, Maystadt I, McDougall C, McEntagart M, Mendelsohn N, Miller DT, Mortier G, Morton J, Pappas J, Plotkin SR, Pond D, Rosenbaum K, Rubin K, Russell L, Rutledge LS, Saletti V, Schonberg R, Schreiber A, Seidel M, Siqveland E, Stockton DW, Trevisson E, Ullrich NJ, Upadhyaya M, van Minkelen R, Verhelst H, Wallace MR, Yap YS, Zackai E, Zonana J, Zurcher V, Claes K, Martin Y, Korf BR, Legius E, Messiaen LM (2018) Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844–848. Am J Hum Genet 102:69–87PubMedCrossRef Koczkowska M, Chen Y, Callens T, Gomes A, Sharp A, Johnson S, Hsiao MC, Chen Z, Balasubramanian M, Barnett CP, Becker TA, Ben-Shachar S, Bertola DR, Blakeley JO, Burkitt-Wright EMM, Callaway A, Crenshaw M, Cunha KS, Cunningham M, D’Agostino MD, Dahan K, De Luca A, Destree A, Dhamija R, Eoli M, Evans DGR, Galvin-Parton P, George-Abraham JK, Gripp KW, Guevara-Campos J, Hanchard NA, Hernandez-Chico C, Immken L, Janssens S, Jones KJ, Keena BA, Kochhar A, Liebelt J, Martir-Negron A, Mahoney MJ, Maystadt I, McDougall C, McEntagart M, Mendelsohn N, Miller DT, Mortier G, Morton J, Pappas J, Plotkin SR, Pond D, Rosenbaum K, Rubin K, Russell L, Rutledge LS, Saletti V, Schonberg R, Schreiber A, Seidel M, Siqveland E, Stockton DW, Trevisson E, Ullrich NJ, Upadhyaya M, van Minkelen R, Verhelst H, Wallace MR, Yap YS, Zackai E, Zonana J, Zurcher V, Claes K, Martin Y, Korf BR, Legius E, Messiaen LM (2018) Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844–848. Am J Hum Genet 102:69–87PubMedCrossRef
3.
go back to reference Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y, Blakeley J, Babovic-Vuksanovic D, Cunha KS, Ferner R, Fisher MJ, Friedman JM, Gutmann DH, Kehrer-Sawatzki H, Korf BR, Mautner VF, Peltonen S, Rauen KA, Riccardi V, Schorry E, Stemmer-Rachamimov A, Stevenson DA, Tadini G, Ullrich NJ, Viskochil D, Wimmer K, Yohay K, International Consensus Group on Neurofibromatosis Diagnostic C, Huson SM, Evans DG, Plotkin SR (2021) Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med 23:1506–1513CrossRef Legius E, Messiaen L, Wolkenstein P, Pancza P, Avery RA, Berman Y, Blakeley J, Babovic-Vuksanovic D, Cunha KS, Ferner R, Fisher MJ, Friedman JM, Gutmann DH, Kehrer-Sawatzki H, Korf BR, Mautner VF, Peltonen S, Rauen KA, Riccardi V, Schorry E, Stemmer-Rachamimov A, Stevenson DA, Tadini G, Ullrich NJ, Viskochil D, Wimmer K, Yohay K, International Consensus Group on Neurofibromatosis Diagnostic C, Huson SM, Evans DG, Plotkin SR (2021) Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med 23:1506–1513CrossRef
4.
go back to reference Brosius SN, Vossough A, Fisher MJ, Lang SS, Beslow LA, George BJ, Ichord R (2022) Characteristics of moyamoya syndrome in pediatric patients with neurofibromatosis type 1. Pediatr Neurol 134:85–92PubMedCrossRef Brosius SN, Vossough A, Fisher MJ, Lang SS, Beslow LA, George BJ, Ichord R (2022) Characteristics of moyamoya syndrome in pediatric patients with neurofibromatosis type 1. Pediatr Neurol 134:85–92PubMedCrossRef
5.
go back to reference Kotch C, Brosius SN, De Raedt T, Fisher MJ (2023) Updates in the management of central and peripheral nervous system tumors among patients with neurofibromatosis type 1 and neurofibromatosis type 2. Pediatr Neurosurg 58(5):267–280PubMedCrossRef Kotch C, Brosius SN, De Raedt T, Fisher MJ (2023) Updates in the management of central and peripheral nervous system tumors among patients with neurofibromatosis type 1 and neurofibromatosis type 2. Pediatr Neurosurg 58(5):267–280PubMedCrossRef
6.
go back to reference Costa AA, Gutmann DH (2019) Brain tumors in neurofibromatosis type 1. Neurooncol Adv 1:vdz040PubMed Costa AA, Gutmann DH (2019) Brain tumors in neurofibromatosis type 1. Neurooncol Adv 1:vdz040PubMed
8.
go back to reference Guillamo JS, Creange A, Kalifa C, Grill J, Rodriguez D, Doz F, Barbarot S, Zerah M, Sanson M, Bastuji-Garin S, Wolkenstein P, Reseau NFF (2003) Prognostic factors of CNS tumours in neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain 126:152–160PubMedCrossRef Guillamo JS, Creange A, Kalifa C, Grill J, Rodriguez D, Doz F, Barbarot S, Zerah M, Sanson M, Bastuji-Garin S, Wolkenstein P, Reseau NFF (2003) Prognostic factors of CNS tumours in neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain 126:152–160PubMedCrossRef
9.
go back to reference Mahdi J, Shah AC, Sato A, Morris SM, McKinstry RC, Listernick R, Packer RJ, Fisher MJ, Gutmann DH (2017) A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology 88:1584–1589PubMedPubMedCentralCrossRef Mahdi J, Shah AC, Sato A, Morris SM, McKinstry RC, Listernick R, Packer RJ, Fisher MJ, Gutmann DH (2017) A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology 88:1584–1589PubMedPubMedCentralCrossRef
10.
go back to reference Parsa CF, Hoyt CS, Lesser RL, Weinstein JM, Strother CM, Muci-Mendoza R, Ramella M, Manor RS, Fletcher WA, Repka MX, Garrity JA, Ebner RN, Monteiro ML, McFadzean RM, Rubtsova IV, Hoyt WF (2001) Spontaneous regression of optic gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmol 119:516–529PubMedCrossRef Parsa CF, Hoyt CS, Lesser RL, Weinstein JM, Strother CM, Muci-Mendoza R, Ramella M, Manor RS, Fletcher WA, Repka MX, Garrity JA, Ebner RN, Monteiro ML, McFadzean RM, Rubtsova IV, Hoyt WF (2001) Spontaneous regression of optic gliomas: thirteen cases documented by serial neuroimaging. Arch Ophthalmol 119:516–529PubMedCrossRef
11.
go back to reference Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH (2020) Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 22:773–784PubMedPubMedCentralCrossRef Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH (2020) Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 22:773–784PubMedPubMedCentralCrossRef
12.
go back to reference Fisher MJ, Jones DTW, Li Y, Guo X, Sonawane PS, Waanders AJ, Phillips JJ, Weiss WA, Resnick AC, Gosline S, Banerjee J, Guinney J, Gnekow A, Kandels D, Foreman NK, Korshunov A, Ryzhova M, Massimi L, Gururangan S, Kieran MW, Wang Z, Fouladi M, Sato M, Ora I, Holm S, Markham SJ, Beck P, Jager N, Wittmann A, Sommerkamp AC, Sahm F, Pfister SM, Gutmann DH (2021) Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol 141:605–617PubMedCrossRef Fisher MJ, Jones DTW, Li Y, Guo X, Sonawane PS, Waanders AJ, Phillips JJ, Weiss WA, Resnick AC, Gosline S, Banerjee J, Guinney J, Gnekow A, Kandels D, Foreman NK, Korshunov A, Ryzhova M, Massimi L, Gururangan S, Kieran MW, Wang Z, Fouladi M, Sato M, Ora I, Holm S, Markham SJ, Beck P, Jager N, Wittmann A, Sommerkamp AC, Sahm F, Pfister SM, Gutmann DH (2021) Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol 141:605–617PubMedCrossRef
13.
go back to reference de Blank PMK, Fisher MJ, Liu GT, Gutmann DH, Listernick R, Ferner RE, Avery RA (2017) Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol 37(Suppl 1):S23–S32PubMedPubMedCentralCrossRef de Blank PMK, Fisher MJ, Liu GT, Gutmann DH, Listernick R, Ferner RE, Avery RA (2017) Optic pathway gliomas in neurofibromatosis type 1: an update: surveillance, treatment indications, and biomarkers of vision. J Neuroophthalmol 37(Suppl 1):S23–S32PubMedPubMedCentralCrossRef
14.
go back to reference Avery RA, Ferner RE, Listernick R, Fisher MJ, Gutmann DH, Liu GT (2012) Visual acuity in children with low grade gliomas of the visual pathway: implications for patient care and clinical research. J Neurooncol 110:1–7PubMedCrossRef Avery RA, Ferner RE, Listernick R, Fisher MJ, Gutmann DH, Liu GT (2012) Visual acuity in children with low grade gliomas of the visual pathway: implications for patient care and clinical research. J Neurooncol 110:1–7PubMedCrossRef
15.
go back to reference Pillay-Smiley N, Leach J, Lane A, Hummel T, Fangusaro J, de Blank P (2023) Evaluating focal areas of signal intensity (FASI) in children with neurofibromatosis type-1 (NF1) treated with selumetinib on Pediatric Brain Tumor Consortium (PBTC)-029B. Cancers (Basel) 15(7):2109PubMedCrossRef Pillay-Smiley N, Leach J, Lane A, Hummel T, Fangusaro J, de Blank P (2023) Evaluating focal areas of signal intensity (FASI) in children with neurofibromatosis type-1 (NF1) treated with selumetinib on Pediatric Brain Tumor Consortium (PBTC)-029B. Cancers (Basel) 15(7):2109PubMedCrossRef
16.
go back to reference Azizi AA, Walker DA, Liu JF, Sehested A, Jaspan T, Pemp B, Simmons I, Ferner R, Grill J, Hargrave D, Driever PH, Evans DG, Opocher E, Siope Nf1 Opg Nottingham UKW (2021) NF1 optic pathway glioma: analyzing risk factors for visual outcome and indications to treat. Neuro Oncol 23:100–111PubMedCrossRef Azizi AA, Walker DA, Liu JF, Sehested A, Jaspan T, Pemp B, Simmons I, Ferner R, Grill J, Hargrave D, Driever PH, Evans DG, Opocher E, Siope Nf1 Opg Nottingham UKW (2021) NF1 optic pathway glioma: analyzing risk factors for visual outcome and indications to treat. Neuro Oncol 23:100–111PubMedCrossRef
17.
go back to reference Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, Packer RJ, Tabori U, Hoffman RO, Ardern-Holmes SL, Hummel TR, Hargrave DR, Bouffet E, Charrow J, Bilaniuk LT, Balcer LJ, Liu GT (2012) Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol 14:790–797PubMedPubMedCentralCrossRef Fisher MJ, Loguidice M, Gutmann DH, Listernick R, Ferner RE, Ullrich NJ, Packer RJ, Tabori U, Hoffman RO, Ardern-Holmes SL, Hummel TR, Hargrave DR, Bouffet E, Charrow J, Bilaniuk LT, Balcer LJ, Liu GT (2012) Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro Oncol 14:790–797PubMedPubMedCentralCrossRef
18.
go back to reference Kotch C, Avery R, Getz KD, Bouffet E, de Blank P, Listernick R, Gutmann DH, Bornhorst M, Campen C, Liu GT, Aplenc R, Li Y, Fisher MJ (2022) Risk factors for treatment refractory and relapsed optic pathway glioma in children with neurofibromatosis type 1. Neuro Oncol 24(8):1377–1386PubMedPubMedCentralCrossRef Kotch C, Avery R, Getz KD, Bouffet E, de Blank P, Listernick R, Gutmann DH, Bornhorst M, Campen C, Liu GT, Aplenc R, Li Y, Fisher MJ (2022) Risk factors for treatment refractory and relapsed optic pathway glioma in children with neurofibromatosis type 1. Neuro Oncol 24(8):1377–1386PubMedPubMedCentralCrossRef
19.
go back to reference Kotch C, Si SJ, Desai K, Caminada P, Lo Russo FM, Li Y, Liu GT, Avery RA, Fisher MJ (2023) The impact of changes in gadolinium-enhancement on disease progression in children with neurofibromatosis type 1-associated optic pathway glioma: a retrospective analysis. J Neurooncol 164:741–747PubMedCrossRef Kotch C, Si SJ, Desai K, Caminada P, Lo Russo FM, Li Y, Liu GT, Avery RA, Fisher MJ (2023) The impact of changes in gadolinium-enhancement on disease progression in children with neurofibromatosis type 1-associated optic pathway glioma: a retrospective analysis. J Neurooncol 164:741–747PubMedCrossRef
20.
go back to reference Kinori M, Armarnik S, Listernick R, Charrow J, Zeid JL (2021) Neurofibromatosis type 1-associated optic pathway glioma in children: a follow-up of 10 years or more. Am J Ophthalmol 221:91–96PubMedCrossRef Kinori M, Armarnik S, Listernick R, Charrow J, Zeid JL (2021) Neurofibromatosis type 1-associated optic pathway glioma in children: a follow-up of 10 years or more. Am J Ophthalmol 221:91–96PubMedCrossRef
21.
go back to reference Mahdi J, Goyal MS, Griffith J, Morris SM, Gutmann DH (2020) Nonoptic pathway tumors in children with neurofibromatosis type 1. Neurology 95:e1052–e1059PubMedPubMedCentralCrossRef Mahdi J, Goyal MS, Griffith J, Morris SM, Gutmann DH (2020) Nonoptic pathway tumors in children with neurofibromatosis type 1. Neurology 95:e1052–e1059PubMedPubMedCentralCrossRef
22.
go back to reference Henning AM, Handrup MM, Kjeldsen SM, Larsen DA, Ejerskov C (2021) Optic pathway glioma and the sex association in neurofibromatosis type 1: a single-center study. Orphanet J Rare Dis 16:489PubMedPubMedCentralCrossRef Henning AM, Handrup MM, Kjeldsen SM, Larsen DA, Ejerskov C (2021) Optic pathway glioma and the sex association in neurofibromatosis type 1: a single-center study. Orphanet J Rare Dis 16:489PubMedPubMedCentralCrossRef
23.
go back to reference Fangusaro J, Witt O, Hernaiz Driever P, Bag AK, de Blank P, Kadom N, Kilburn L, Lober RM, Robison NJ, Fisher MJ, Packer RJ, Young Poussaint T, Papusha L, Avula S, Brandes AA, Bouffet E, Bowers D, Artemov A, Chintagumpala M, Zurakowski D, van den Bent M, Bison B, Yeom KW, Taal W, Warren KE (2020) Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 21:e305–e316PubMedCrossRef Fangusaro J, Witt O, Hernaiz Driever P, Bag AK, de Blank P, Kadom N, Kilburn L, Lober RM, Robison NJ, Fisher MJ, Packer RJ, Young Poussaint T, Papusha L, Avula S, Brandes AA, Bouffet E, Bowers D, Artemov A, Chintagumpala M, Zurakowski D, van den Bent M, Bison B, Yeom KW, Taal W, Warren KE (2020) Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 21:e305–e316PubMedCrossRef
24.
go back to reference Grill J, Laithier V, Rodriguez D, Raquin MA, Pierre-Kahn A, Kalifa C (2000) When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single centre. Eur J Pediatr 159:692–696PubMedCrossRef Grill J, Laithier V, Rodriguez D, Raquin MA, Pierre-Kahn A, Kalifa C (2000) When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single centre. Eur J Pediatr 159:692–696PubMedCrossRef
25.
go back to reference Dobson V, Quinn GE, Biglan AW, Tung B, Flynn JT, Palmer EA (1990) Acuity card assessment of visual function in the cryotherapy for retinopathy of prematurity trial. Invest Ophthalmol Vis Sci 31:1702–1708PubMed Dobson V, Quinn GE, Biglan AW, Tung B, Flynn JT, Palmer EA (1990) Acuity card assessment of visual function in the cryotherapy for retinopathy of prematurity trial. Invest Ophthalmol Vis Sci 31:1702–1708PubMed
26.
go back to reference Friedman DS, Katz J, Repka MX, Giordano L, Ibironke J, Hawse P, Tielsch JM (2008) Lack of concordance between fixation preference and HOTV optotype visual acuity in preschool children: the Baltimore Pediatric Eye Disease Study. Ophthalmology 115:1796–1799PubMedCrossRef Friedman DS, Katz J, Repka MX, Giordano L, Ibironke J, Hawse P, Tielsch JM (2008) Lack of concordance between fixation preference and HOTV optotype visual acuity in preschool children: the Baltimore Pediatric Eye Disease Study. Ophthalmology 115:1796–1799PubMedCrossRef
27.
go back to reference Fisher MJ, Avery RA, Allen JC, Ardern-Holmes SL, Bilaniuk LT, Ferner RE, Gutmann DH, Listernick R, Martin S, Ullrich NJ, Liu GT (2013) Functional outcome measures for NF1-associated optic pathway glioma clinical trials. Neurology 81:S15–S24PubMedPubMedCentralCrossRef Fisher MJ, Avery RA, Allen JC, Ardern-Holmes SL, Bilaniuk LT, Ferner RE, Gutmann DH, Listernick R, Martin S, Ullrich NJ, Liu GT (2013) Functional outcome measures for NF1-associated optic pathway glioma clinical trials. Neurology 81:S15–S24PubMedPubMedCentralCrossRef
28.
go back to reference Avery RA, Mansoor A, Idrees R, Trimboli-Heidler C, Ishikawa H, Packer RJ, Linguraru MG (2016) Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1. Neurology 87:2403–2407PubMedPubMedCentralCrossRef Avery RA, Mansoor A, Idrees R, Trimboli-Heidler C, Ishikawa H, Packer RJ, Linguraru MG (2016) Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1. Neurology 87:2403–2407PubMedPubMedCentralCrossRef
29.
go back to reference Arnljots U, Nilsson M, Sandvik U, Myrberg IH, Munoz DM, Blomgren K, Hellgren K (2022) Optical coherence tomography identifies visual pathway involvement earlier than visual function tests in children with MRI-verified optic pathway gliomas. Cancers (Basel) 14(2):318PubMedCrossRef Arnljots U, Nilsson M, Sandvik U, Myrberg IH, Munoz DM, Blomgren K, Hellgren K (2022) Optical coherence tomography identifies visual pathway involvement earlier than visual function tests in children with MRI-verified optic pathway gliomas. Cancers (Basel) 14(2):318PubMedCrossRef
30.
go back to reference de Blank PM, Berman JI, Liu GT, Roberts TP, Fisher MJ (2013) Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro Oncol 15:1088–1095PubMedPubMedCentralCrossRef de Blank PM, Berman JI, Liu GT, Roberts TP, Fisher MJ (2013) Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro Oncol 15:1088–1095PubMedPubMedCentralCrossRef
31.
go back to reference Hales PW, Smith V, Dhanoa-Hayre D, O’Hare P, Mankad K, d’Arco F, Cooper J, Kaur R, Phipps K, Bowman R, Hargrave D, Clark C (2018) Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity. Neuroimage Clin 17:541–548PubMedCrossRef Hales PW, Smith V, Dhanoa-Hayre D, O’Hare P, Mankad K, d’Arco F, Cooper J, Kaur R, Phipps K, Bowman R, Hargrave D, Clark C (2018) Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity. Neuroimage Clin 17:541–548PubMedCrossRef
32.
go back to reference Pisapia JM, Akbari H, Rozycki M, Thawani JP, Storm PB, Avery RA, Vossough A, Fisher MJ, Heuer GG, Davatzikos C (2020) Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning. Neurooncol Adv 2:vdaa090PubMedPubMedCentral Pisapia JM, Akbari H, Rozycki M, Thawani JP, Storm PB, Avery RA, Vossough A, Fisher MJ, Heuer GG, Davatzikos C (2020) Predicting pediatric optic pathway glioma progression using advanced magnetic resonance image analysis and machine learning. Neurooncol Adv 2:vdaa090PubMedPubMedCentral
33.
go back to reference Fisher MJ, Liu GT, Ferner RE, Gutmann DH, Listernick R, de Blank P, Zeid J, Ullrich NJ, Heidary G, Bornhorst M, Stasheff SF, Rosser T, Borchert M, Ardern-Holmes S, Flaherty M, Hummel TR, Motley WW, Bielamowicz K, Phillips PH, Bouffet E, Reginald A, Wolf DS, Peragallo J, Van Mater D, El-Dairi M, Sato A, Tarczy-Hornoch K, Klesse L, Hogan N, Foreman N, McCourt E, Allen J, Ranka M, Campen C, Beres S, Moertel C, Areaux R, Stearns D, Orge F, Crawford J, O’Halloran H, Brodsky M, Esbenshade AJ, Donahue S, Cutter G, Avery RA (2020) NFB-09. Enrollment and clinical characteristics of newly diagnosed, neurofibromatosis type 1 associated optic pathway glioma (NF1-OPG): preliminary results from an international multi-center natural history study. Neuro Oncol 22:iii419–iii419PubMedCentralCrossRef Fisher MJ, Liu GT, Ferner RE, Gutmann DH, Listernick R, de Blank P, Zeid J, Ullrich NJ, Heidary G, Bornhorst M, Stasheff SF, Rosser T, Borchert M, Ardern-Holmes S, Flaherty M, Hummel TR, Motley WW, Bielamowicz K, Phillips PH, Bouffet E, Reginald A, Wolf DS, Peragallo J, Van Mater D, El-Dairi M, Sato A, Tarczy-Hornoch K, Klesse L, Hogan N, Foreman N, McCourt E, Allen J, Ranka M, Campen C, Beres S, Moertel C, Areaux R, Stearns D, Orge F, Crawford J, O’Halloran H, Brodsky M, Esbenshade AJ, Donahue S, Cutter G, Avery RA (2020) NFB-09. Enrollment and clinical characteristics of newly diagnosed, neurofibromatosis type 1 associated optic pathway glioma (NF1-OPG): preliminary results from an international multi-center natural history study. Neuro Oncol 22:iii419–iii419PubMedCentralCrossRef
34.
go back to reference Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, Salvador H, Azizi AA, Mautner V, Rohl C, Peltonen S, Stivaros S, Legius E, Oostenbrink R, Group EGNTMG (2023) ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine 56:101818CrossRef Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, Salvador H, Azizi AA, Mautner V, Rohl C, Peltonen S, Stivaros S, Legius E, Oostenbrink R, Group EGNTMG (2023) ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine 56:101818CrossRef
35.
go back to reference Habiby R, Silverman B, Listernick R, Charrow J (1995) Precocious puberty in children with neurofibromatosis type 1. J Pediatr 126:364–367PubMedCrossRef Habiby R, Silverman B, Listernick R, Charrow J (1995) Precocious puberty in children with neurofibromatosis type 1. J Pediatr 126:364–367PubMedCrossRef
36.
go back to reference Moreno L, Bautista F, Ashley S, Duncan C, Zacharoulis S (2010) Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. Eur J Cancer 46:2253–2259PubMedCrossRef Moreno L, Bautista F, Ashley S, Duncan C, Zacharoulis S (2010) Does chemotherapy affect the visual outcome in children with optic pathway glioma? A systematic review of the evidence. Eur J Cancer 46:2253–2259PubMedCrossRef
37.
go back to reference Ater JL, Xia C, Mazewski CM, Booth TN, Freyer DR, Packer RJ, Sposto R, Vezina G, Pollack IF (2016) Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: a report from the Children’s Oncology Group. Cancer 122:1928–1936PubMedCrossRef Ater JL, Xia C, Mazewski CM, Booth TN, Freyer DR, Packer RJ, Sposto R, Vezina G, Pollack IF (2016) Nonrandomized comparison of neurofibromatosis type 1 and non-neurofibromatosis type 1 children who received carboplatin and vincristine for progressive low-grade glioma: a report from the Children’s Oncology Group. Cancer 122:1928–1936PubMedCrossRef
38.
go back to reference Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N, Carret AS, Lafay-Cousin L, Larouche V, Hawkins CE, Pond GR, Poskitt K, Keene D, Johnston DL, Eisenstat DD, Krishnatry R, Mistry M, Arnoldo A, Ramaswamy V, Huang A, Bartels U, Tabori U, Bouffet E (2016) Phase II weekly vinblastine for chemotherapy-naive children with progressive low-grade glioma: a Canadian Pediatric Brain Tumor Consortium Study. J Clin Oncol 34:3537–3543PubMedCrossRef Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N, Carret AS, Lafay-Cousin L, Larouche V, Hawkins CE, Pond GR, Poskitt K, Keene D, Johnston DL, Eisenstat DD, Krishnatry R, Mistry M, Arnoldo A, Ramaswamy V, Huang A, Bartels U, Tabori U, Bouffet E (2016) Phase II weekly vinblastine for chemotherapy-naive children with progressive low-grade glioma: a Canadian Pediatric Brain Tumor Consortium Study. J Clin Oncol 34:3537–3543PubMedCrossRef
39.
go back to reference Packer RJ, Jakacki R, Horn M, Rood B, Vezina G, MacDonald T, Fisher MJ, Cohen B (2009) Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr Blood Cancer 52:791–795PubMedCrossRef Packer RJ, Jakacki R, Horn M, Rood B, Vezina G, MacDonald T, Fisher MJ, Cohen B (2009) Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr Blood Cancer 52:791–795PubMedCrossRef
40.
go back to reference Bennebroek CA, Schouten CR, Montauban-van Swijndregt MC, Saeed P, Porro GL, Pott JWR, Dittrich ATM, Oostenbrink R, Schouten-van Meeteren AY, de Jong MC, de Graaf P (2024) Treatment evaluation by volumetric segmentation in pediatric optic pathway glioma: evaluation of the effect of bevacizumab on intra-tumor components. J Neurooncol 166:79–87PubMedCrossRef Bennebroek CA, Schouten CR, Montauban-van Swijndregt MC, Saeed P, Porro GL, Pott JWR, Dittrich ATM, Oostenbrink R, Schouten-van Meeteren AY, de Jong MC, de Graaf P (2024) Treatment evaluation by volumetric segmentation in pediatric optic pathway glioma: evaluation of the effect of bevacizumab on intra-tumor components. J Neurooncol 166:79–87PubMedCrossRef
41.
go back to reference Gururangan S, Fangusaro J, Poussaint TY, McLendon RE, Onar-Thomas A, Wu S, Packer RJ, Banerjee A, Gilbertson RJ, Fahey F, Vajapeyam S, Jakacki R, Gajjar A, Goldman S, Pollack IF, Friedman HS, Boyett JM, Fouladi M, Kun LE (2014) Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas–a Pediatric Brain Tumor Consortium study. Neuro Oncol 16:310–317PubMedCrossRef Gururangan S, Fangusaro J, Poussaint TY, McLendon RE, Onar-Thomas A, Wu S, Packer RJ, Banerjee A, Gilbertson RJ, Fahey F, Vajapeyam S, Jakacki R, Gajjar A, Goldman S, Pollack IF, Friedman HS, Boyett JM, Fouladi M, Kun LE (2014) Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas–a Pediatric Brain Tumor Consortium study. Neuro Oncol 16:310–317PubMedCrossRef
42.
go back to reference Siegel BI, Nelson D, Peragallo JH, MacDonald TJ, Wolf DS (2023) Visual outcomes after bevacizumab-based therapy for optic pathway glioma. Pediatr Blood Cancer 70:e30668PubMedCrossRef Siegel BI, Nelson D, Peragallo JH, MacDonald TJ, Wolf DS (2023) Visual outcomes after bevacizumab-based therapy for optic pathway glioma. Pediatr Blood Cancer 70:e30668PubMedCrossRef
43.
go back to reference Green K, Panagopoulou P, D’Arco F, O’Hare P, Bowman R, Walters B, Dahl C, Jorgensen M, Patel P, Slater O, Ahmed R, Bailey S, Carceller F, Collins R, Corley E, English M, Howells L, Kamal A, Kilday JJ, Lowis S, Lumb B, Pace E, Picton S, Pizer B, Shafiq A, Uzunova L, Wayman H, Wilson S, Hargrave D, Opocher E (2023) A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: safety, efficacy, visual morbidity, and outcomes. Neuro Oncol 25:774–785PubMedCrossRef Green K, Panagopoulou P, D’Arco F, O’Hare P, Bowman R, Walters B, Dahl C, Jorgensen M, Patel P, Slater O, Ahmed R, Bailey S, Carceller F, Collins R, Corley E, English M, Howells L, Kamal A, Kilday JJ, Lowis S, Lumb B, Pace E, Picton S, Pizer B, Shafiq A, Uzunova L, Wayman H, Wilson S, Hargrave D, Opocher E (2023) A nationwide evaluation of bevacizumab-based treatments in pediatric low-grade glioma in the UK: safety, efficacy, visual morbidity, and outcomes. Neuro Oncol 25:774–785PubMedCrossRef
44.
go back to reference Bhatia S, Chen Y, Wong FL, Hageman L, Smith K, Korf B, Cannon A, Leidy DJ, Paz A, Andress JE, Friedman GK, Metrock K, Neglia JP, Arnold M, Turcotte LM, de Blank P, Leisenring W, Armstrong GT, Robison LL, Clapp DW, Shannon K, Nakamura JL, Fisher MJ (2019) Subsequent neoplasms after a primary tumor in individuals with neurofibromatosis type 1. J Clin Oncol 37:3050–3058PubMedPubMedCentralCrossRef Bhatia S, Chen Y, Wong FL, Hageman L, Smith K, Korf B, Cannon A, Leidy DJ, Paz A, Andress JE, Friedman GK, Metrock K, Neglia JP, Arnold M, Turcotte LM, de Blank P, Leisenring W, Armstrong GT, Robison LL, Clapp DW, Shannon K, Nakamura JL, Fisher MJ (2019) Subsequent neoplasms after a primary tumor in individuals with neurofibromatosis type 1. J Clin Oncol 37:3050–3058PubMedPubMedCentralCrossRef
45.
go back to reference Ullrich NJ, Robertson R, Kinnamon DD, Scott RM, Kieran MW, Turner CD, Chi SN, Goumnerova L, Proctor M, Tarbell NJ, Marcus KJ, Pomeroy SL (2007) Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 68:932–938PubMedCrossRef Ullrich NJ, Robertson R, Kinnamon DD, Scott RM, Kieran MW, Turner CD, Chi SN, Goumnerova L, Proctor M, Tarbell NJ, Marcus KJ, Pomeroy SL (2007) Moyamoya following cranial irradiation for primary brain tumors in children. Neurology 68:932–938PubMedCrossRef
46.
go back to reference Plotkin SR, Blakeley JO, Dombi E, Fisher MJ, Hanemann CO, Walsh KS, Wolters PL, Widemann BC (2013) Achieving consensus for clinical trials: the REiNS International Collaboration. Neurology 81:S1-5PubMedPubMedCentralCrossRef Plotkin SR, Blakeley JO, Dombi E, Fisher MJ, Hanemann CO, Walsh KS, Wolters PL, Widemann BC (2013) Achieving consensus for clinical trials: the REiNS International Collaboration. Neurology 81:S1-5PubMedPubMedCentralCrossRef
47.
go back to reference Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, Fangusaro J, Phillips J, Perry A, Turner D, Prados M, Packer RJ, Qaddoumi I, Gururangan S, Pollack IF, Goldman S, Doyle LA, Stewart CF, Boyett JM, Kun LE, Fouladi M (2017) A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 19:1135–1144PubMedPubMedCentralCrossRef Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, Fangusaro J, Phillips J, Perry A, Turner D, Prados M, Packer RJ, Qaddoumi I, Gururangan S, Pollack IF, Goldman S, Doyle LA, Stewart CF, Boyett JM, Kun LE, Fouladi M (2017) A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 19:1135–1144PubMedPubMedCentralCrossRef
48.
go back to reference Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, Weiss B, Kim A, Bornhorst M, Shah AC, Martin S, Roderick MC, Pichard DC, Carbonell A, Paul SM, Therrien J, Kapustina O, Heisey K, Clapp DW, Zhang C, Peer CJ, Figg WD, Smith M, Glod J, Blakeley JO, Steinberg SM, Venzon DJ, Doyle LA, Widemann BC (2020) Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 382:1430–1442PubMedPubMedCentralCrossRef Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, Weiss B, Kim A, Bornhorst M, Shah AC, Martin S, Roderick MC, Pichard DC, Carbonell A, Paul SM, Therrien J, Kapustina O, Heisey K, Clapp DW, Zhang C, Peer CJ, Figg WD, Smith M, Glod J, Blakeley JO, Steinberg SM, Venzon DJ, Doyle LA, Widemann BC (2020) Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 382:1430–1442PubMedPubMedCentralCrossRef
49.
go back to reference Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, Banerjee A, Packer RJ, Kilburn LB, Goldman S, Pollack IF, Qaddoumi I, Jakacki RI, Fisher PG, Dhall G, Baxter P, Kreissman SG, Stewart CF, Jones DTW, Pfister SM, Vezina G, Stern JS, Panigrahy A, Patay Z, Tamrazi B, Jones JY, Haque SS, Enterline DS, Cha S, Fisher MJ, Doyle LA, Smith M, Dunkel IJ, Fouladi M (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20:1011–1022PubMedPubMedCentralCrossRef Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, Banerjee A, Packer RJ, Kilburn LB, Goldman S, Pollack IF, Qaddoumi I, Jakacki RI, Fisher PG, Dhall G, Baxter P, Kreissman SG, Stewart CF, Jones DTW, Pfister SM, Vezina G, Stern JS, Panigrahy A, Patay Z, Tamrazi B, Jones JY, Haque SS, Enterline DS, Cha S, Fisher MJ, Doyle LA, Smith M, Dunkel IJ, Fouladi M (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20:1011–1022PubMedPubMedCentralCrossRef
50.
go back to reference de Blank PMK, Gross AM, Akshintala S, Blakeley JO, Bollag G, Cannon A, Dombi E, Fangusaro J, Gelb BD, Hargrave D, Kim A, Klesse LJ, Loh M, Martin S, Moertel C, Packer R, Payne JM, Rauen KA, Rios JJ, Robison N, Schorry EK, Shannon K, Stevenson DA, Stieglitz E, Ullrich NJ, Walsh KS, Weiss BD, Wolters PL, Yohay K, Yohe ME, Widemann BC, Fisher MJ (2022) MEK inhibitors for neurofibromatosis type 1 manifestations: clinical evidence and consensus. Neuro Oncol 24:1845–1856PubMedPubMedCentralCrossRef de Blank PMK, Gross AM, Akshintala S, Blakeley JO, Bollag G, Cannon A, Dombi E, Fangusaro J, Gelb BD, Hargrave D, Kim A, Klesse LJ, Loh M, Martin S, Moertel C, Packer R, Payne JM, Rauen KA, Rios JJ, Robison N, Schorry EK, Shannon K, Stevenson DA, Stieglitz E, Ullrich NJ, Walsh KS, Weiss BD, Wolters PL, Yohay K, Yohe ME, Widemann BC, Fisher MJ (2022) MEK inhibitors for neurofibromatosis type 1 manifestations: clinical evidence and consensus. Neuro Oncol 24:1845–1856PubMedPubMedCentralCrossRef
51.
go back to reference Ullrich NJ, Prabhu SP, Reddy AT, Fisher MJ, Packer R, Goldman S, Robison NJ, Gutmann DH, Viskochil DH, Allen JC, Korf B, Cantor A, Cutter G, Thomas C, Perentesis JP, Mizuno T, Vinks AA, Manley PE, Chi SN, Kieran MW (2020) A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol 22:1527–1535PubMedPubMedCentralCrossRef Ullrich NJ, Prabhu SP, Reddy AT, Fisher MJ, Packer R, Goldman S, Robison NJ, Gutmann DH, Viskochil DH, Allen JC, Korf B, Cantor A, Cutter G, Thomas C, Perentesis JP, Mizuno T, Vinks AA, Manley PE, Chi SN, Kieran MW (2020) A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro Oncol 22:1527–1535PubMedPubMedCentralCrossRef
52.
go back to reference Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH, Harter DH, Goldberg JD, Hochman T, Merkelson A, Bloom MC, Sievert AJ, Resnick AC, Dhall G, Jones DT, Korshunov A, Pfister SM, Eberhart CG, Zagzag D, Allen JC (2014) Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 16:1408–1416PubMedPubMedCentralCrossRef Karajannis MA, Legault G, Fisher MJ, Milla SS, Cohen KJ, Wisoff JH, Harter DH, Goldberg JD, Hochman T, Merkelson A, Bloom MC, Sievert AJ, Resnick AC, Dhall G, Jones DT, Korshunov A, Pfister SM, Eberhart CG, Zagzag D, Allen JC (2014) Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 16:1408–1416PubMedPubMedCentralCrossRef
53.
go back to reference Tsuji G, Takai-Yumine A, Kato T, Furue M (2021) Metalloproteinase 1 downregulation in neurofibromatosis 1: therapeutic potential of antimalarial hydroxychloroquine and chloroquine. Cell Death Dis 12:513PubMedPubMedCentralCrossRef Tsuji G, Takai-Yumine A, Kato T, Furue M (2021) Metalloproteinase 1 downregulation in neurofibromatosis 1: therapeutic potential of antimalarial hydroxychloroquine and chloroquine. Cell Death Dis 12:513PubMedPubMedCentralCrossRef
54.
go back to reference Guo X, Pan Y, Xiong M, Sanapala S, Anastasaki C, Cobb O, Dahiya S, Gutmann DH (2020) Midkine activation of CD8(+) T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun 11:2177PubMedPubMedCentralCrossRef Guo X, Pan Y, Xiong M, Sanapala S, Anastasaki C, Cobb O, Dahiya S, Gutmann DH (2020) Midkine activation of CD8(+) T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun 11:2177PubMedPubMedCentralCrossRef
55.
go back to reference Guo X, Pan Y, Gutmann DH (2019) Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro Oncol 21:1250–1262PubMedPubMedCentralCrossRef Guo X, Pan Y, Gutmann DH (2019) Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro Oncol 21:1250–1262PubMedPubMedCentralCrossRef
56.
go back to reference de Andrade Costa A, Chatterjee J, Cobb O, Cordell E, Chao A, Schaeffer S, Goldstein A, Dahiya S, Gutmann DH (2022) Immune deconvolution and temporal mapping identifies stromal targets and developmental intervals for abrogating murine low-grade optic glioma formation. Neurooncol Adv 4:vdab194 de Andrade Costa A, Chatterjee J, Cobb O, Cordell E, Chao A, Schaeffer S, Goldstein A, Dahiya S, Gutmann DH (2022) Immune deconvolution and temporal mapping identifies stromal targets and developmental intervals for abrogating murine low-grade optic glioma formation. Neurooncol Adv 4:vdab194
57.
go back to reference Chatterjee J, Sanapala S, Cobb O, Bewley A, Goldstein AK, Cordell E, Ge X, Garbow JR, Holtzman MJ, Gutmann DH (2021) Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat Commun 12:7122PubMedPubMedCentralCrossRef Chatterjee J, Sanapala S, Cobb O, Bewley A, Goldstein AK, Cordell E, Ge X, Garbow JR, Holtzman MJ, Gutmann DH (2021) Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat Commun 12:7122PubMedPubMedCentralCrossRef
58.
go back to reference Hartman LL, Crawford JR, Makale MT, Milburn M, Joshi S, Salazar AM, Hasenauer B, VandenBerg SR, MacDonald TJ, Durden DL (2014) Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol 36:451–457PubMedPubMedCentralCrossRef Hartman LL, Crawford JR, Makale MT, Milburn M, Joshi S, Salazar AM, Hasenauer B, VandenBerg SR, MacDonald TJ, Durden DL (2014) Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol 36:451–457PubMedPubMedCentralCrossRef
59.
go back to reference Anastasaki C, Mo J, Chen JK, Chatterjee J, Pan Y, Scheaffer SM, Cobb O, Monje M, Le LQ, Gutmann DH (2022) Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat Commun 13:2785PubMedPubMedCentralCrossRef Anastasaki C, Mo J, Chen JK, Chatterjee J, Pan Y, Scheaffer SM, Cobb O, Monje M, Le LQ, Gutmann DH (2022) Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat Commun 13:2785PubMedPubMedCentralCrossRef
60.
go back to reference Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, Yalcin B, Anastasaki C, Mulinyawe SB, Ponnuswami A, Scheaffer S, Ma Y, Chang KC, Xia X, Toonen JA, Lennon JJ, Gibson EM, Huguenard JR, Liau LM, Goldberg JL, Monje M, Gutmann DH (2021) NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594:277–282PubMedPubMedCentralCrossRef Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, Yalcin B, Anastasaki C, Mulinyawe SB, Ponnuswami A, Scheaffer S, Ma Y, Chang KC, Xia X, Toonen JA, Lennon JJ, Gibson EM, Huguenard JR, Liau LM, Goldberg JL, Monje M, Gutmann DH (2021) NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594:277–282PubMedPubMedCentralCrossRef
61.
go back to reference Monje M, Borniger JC, D’Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, Hervey-Jumper SL, Hondermarck H, Hurov JB, Kepecs A, Knox SM, Lloyd AC, Magnon C, Saloman JL, Segal RA, Sloan EK, Sun X, Taylor MD, Tracey KJ, Trotman LC, Tuveson DA, Wang TC, White RA, Winkler F (2020) Roadmap for the emerging field of cancer neuroscience. Cell 181:219–222PubMedPubMedCentralCrossRef Monje M, Borniger JC, D’Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, Hervey-Jumper SL, Hondermarck H, Hurov JB, Kepecs A, Knox SM, Lloyd AC, Magnon C, Saloman JL, Segal RA, Sloan EK, Sun X, Taylor MD, Tracey KJ, Trotman LC, Tuveson DA, Wang TC, White RA, Winkler F (2020) Roadmap for the emerging field of cancer neuroscience. Cell 181:219–222PubMedPubMedCentralCrossRef
62.
go back to reference Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, Kushner SA, Elgersma Y (2015) HCN channels are a novel therapeutic target for cognitive dysfunction in neurofibromatosis type 1. Mol Psychiatry 20:1311–1321PubMedPubMedCentralCrossRef Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, Kushner SA, Elgersma Y (2015) HCN channels are a novel therapeutic target for cognitive dysfunction in neurofibromatosis type 1. Mol Psychiatry 20:1311–1321PubMedPubMedCentralCrossRef
63.
go back to reference Robison N, Pauly J, Malvar J, Gardner S, Allen J, Margol A, MacDonald T, Bendel A, Kilburn L, Cluster A, Bowers D, Dorris K, Ullrich N, De Mola RL, Alva E, Leary S, Baxter P, Khatib Z, Cohen K, Davidson TB, Plant A, Bandopadhayay P, Stopka S, Agar N, Wright K, Nelson M, Chi Y-Y, Kieran M (2022) LTBK-04. LATE BREAKING ABSTRACT: MEK162 (binimetinib) in children with progressive or recurrent low-grade glioma: a multi-institutional phase II and target validation study. Neuro Oncol 24:i191–i192PubMedCentralCrossRef Robison N, Pauly J, Malvar J, Gardner S, Allen J, Margol A, MacDonald T, Bendel A, Kilburn L, Cluster A, Bowers D, Dorris K, Ullrich N, De Mola RL, Alva E, Leary S, Baxter P, Khatib Z, Cohen K, Davidson TB, Plant A, Bandopadhayay P, Stopka S, Agar N, Wright K, Nelson M, Chi Y-Y, Kieran M (2022) LTBK-04. LATE BREAKING ABSTRACT: MEK162 (binimetinib) in children with progressive or recurrent low-grade glioma: a multi-institutional phase II and target validation study. Neuro Oncol 24:i191–i192PubMedCentralCrossRef
64.
go back to reference Perreault S, Kiaei DS, Dehaes M, Larouche V, Tabori U, Hawkin C, Lippé S, Ellezam B, Cantin E, Routhier M-È, Caru M, Vairy S, Legault G, Bouffet E, Ramaswamy V, Coltin H, Lafay-Cousin L, Hukin J, Erker C, Jabado N, Team T-S (2022) A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway. J Clin Oncol 40:2042–2042CrossRef Perreault S, Kiaei DS, Dehaes M, Larouche V, Tabori U, Hawkin C, Lippé S, Ellezam B, Cantin E, Routhier M-È, Caru M, Vairy S, Legault G, Bouffet E, Ramaswamy V, Coltin H, Lafay-Cousin L, Hukin J, Erker C, Jabado N, Team T-S (2022) A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway. J Clin Oncol 40:2042–2042CrossRef
65.
go back to reference Vinitsky A, Chiang J, Bag AK, Campagne O, Stewart CF, Dunphy P, Shulkin B, Li Q, Lin T, Hoehn ME, Johnson JN, Towbin JA, Khan R, Tatevossian RG, Armstrong GT, Potter B, Conklin H, Shearer T, Scott S, Robinson GW (2022) LGG-22. SJ901: phase I/II evaluation of single agent mirdametinib (PD-0325901), a brain-penetrant MEK1/2 inhibitor, for the treatment of children, adolescents, and young adults with low-grade glioma (LGG). Neuro Oncol 24:i92PubMedCentralCrossRef Vinitsky A, Chiang J, Bag AK, Campagne O, Stewart CF, Dunphy P, Shulkin B, Li Q, Lin T, Hoehn ME, Johnson JN, Towbin JA, Khan R, Tatevossian RG, Armstrong GT, Potter B, Conklin H, Shearer T, Scott S, Robinson GW (2022) LGG-22. SJ901: phase I/II evaluation of single agent mirdametinib (PD-0325901), a brain-penetrant MEK1/2 inhibitor, for the treatment of children, adolescents, and young adults with low-grade glioma (LGG). Neuro Oncol 24:i92PubMedCentralCrossRef
Metadata
Title
Low-grade glioma in children with neurofibromatosis type 1: surveillance, treatment indications, management, and future directions
Authors
Chelsea Kotch
Peter de Blank
David H. Gutmann
Michael J. Fisher
Publication date
05-05-2024
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-024-06430-8