Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Neuroblastoma | Research article

Effects of novel pyrrolomycin MP1 in MYCN amplified chemoresistant neuroblastoma cell lines alone and combined with temsirolimus

Authors: Timothy R. McGuire, Don W. Coulter, Dachang Bai, Jason A. Sughroue, Jerry Li, Zunhua Yang, Zhen Qiao, Yan Liu, Daryl J. Murry, Yashpal S. Chhonker, Erin M. McIntyre, Gracey Alexander, John G. Sharp, Rongshi Li

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

The activity of MP1, a pyrrolomycin, was studied in MYCN amplified neuroblastoma (NB) alone and combined with temsirolimus (TEM).

Methods

Activity of MP1 was tested in MYCN amplified (BE-2c, IMR) and non amplified (SKN-AS) NB cells. The effect of MP1 on MYCN, MCL-1, cleaved PARP, LC3II/LC3I, bcl-2, BAX, and BRD-4 were determined by western blot and RNAseq. The effect of MP1 on metabolism, mitochondrial morphology, and cell cycle was determined. Toxicology and efficacy of MP1 plus TEM were evaluated.

Results

The IC50 of MP1 was 0.096 μM in BE-2c cells compared to 0.89 μM in IMR, and >50 μM in SKN-AS. The IC50 of MP1 plus TEM in BE-2c cells was 0.023 μM. MP1 inhibited metabolism leading to quiescence and produced a decline in cell cycle S-phase. Electron microscopy showed cristae loss and rounding up of mitochondria. Gene and protein expression for MYCN and MCL-1 declined while LCII and cleaved PARP increased. Protein expression of BAX, bcl-2, and BRD-4 were not significantly changed after MP1 treatment. The in-vivo concentrations of MP1 in blood and tumor were sufficient to produce the biologic effects seen in-vitro. MP1 plus TEM produced a complete response in 3 out of 5 tumor bearing mice. In a second mouse study, the combination of MP1 and TEM slowed tumor growth compared to control.

Conclusions

MP1 has a potent inhibitory effect on the viability of MYCN amplified NB. Inhibition of metabolism by MP1 induced quiescence and autophagy with a favorable toxicology and drug distribution profile. When combined with TEM anti-tumor activity was potentiated in-vitro and in-vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64:83–103.CrossRefPubMed Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64:83–103.CrossRefPubMed
2.
go back to reference Hallett A, Traunecker H. A review and update on neuroblastoma. Paediatr Child Health. 2012;22:103–7.CrossRef Hallett A, Traunecker H. A review and update on neuroblastoma. Paediatr Child Health. 2012;22:103–7.CrossRef
3.
go back to reference Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr. 2015;4:20–32.PubMedPubMedCentral Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr. 2015;4:20–32.PubMedPubMedCentral
5.
go back to reference Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metabol. 2015;3:1–11.CrossRef Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer. Cancer Metabol. 2015;3:1–11.CrossRef
8.
go back to reference Li R. Marinopyrroles: unique drug discoveries based on marine natural products. Med Res Rev. 2016;36:169–89.CrossRefPubMed Li R. Marinopyrroles: unique drug discoveries based on marine natural products. Med Res Rev. 2016;36:169–89.CrossRefPubMed
9.
go back to reference Li R, Sebti SM, Liu Y, Qin Y, Song H, Cheng C. Marinopyrrole derivatives and methods of making and using same. U.S. patent no. 2018;9,868,474. Li R, Sebti SM, Liu Y, Qin Y, Song H, Cheng C. Marinopyrrole derivatives and methods of making and using same. U.S. patent no. 2018;9,868,474.
10.
go back to reference Li R, Sebti SM, Liu Y. Marinopyrrole derivatives as anticancer agents. U.S. patent no. 2016;9,340,501. Li R, Sebti SM, Liu Y. Marinopyrrole derivatives as anticancer agents. U.S. patent no. 2016;9,340,501.
11.
go back to reference Cheng C, Pan L, Chen Y, Song H, Qin Y, Li R. Total synthesis of (±) marinopyrrole A and its library as potential antibiotic and anticancer agents. J Comb Chem. 2010;12:541–7.CrossRefPubMed Cheng C, Pan L, Chen Y, Song H, Qin Y, Li R. Total synthesis of (±) marinopyrrole A and its library as potential antibiotic and anticancer agents. J Comb Chem. 2010;12:541–7.CrossRefPubMed
12.
go back to reference Doi K, Li R, Sung SS, Wu H, Liu Y, Manieri W, et al. Discovery of marinopyrrole A (Maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasome degradation. J Biol Chem. 2012;287:10224–35.CrossRefPubMedCentralPubMed Doi K, Li R, Sung SS, Wu H, Liu Y, Manieri W, et al. Discovery of marinopyrrole A (Maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasome degradation. J Biol Chem. 2012;287:10224–35.CrossRefPubMedCentralPubMed
13.
go back to reference Thiele CJ. Neuroblastoma. In: Masters J, editor. Human cell culture, vol. 1. Lancaster: Kluwer Academic; 1998. p. 21–53.CrossRef Thiele CJ. Neuroblastoma. In: Masters J, editor. Human cell culture, vol. 1. Lancaster: Kluwer Academic; 1998. p. 21–53.CrossRef
14.
go back to reference Lodrini M, Sprussel A, Astrahantseff K, Tiburius D, Konschak R, Lode H, et al. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma. Oncotarget. 2017;8:85234–51.CrossRefPubMedCentralPubMed Lodrini M, Sprussel A, Astrahantseff K, Tiburius D, Konschak R, Lode H, et al. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma. Oncotarget. 2017;8:85234–51.CrossRefPubMedCentralPubMed
15.
go back to reference St. Laurent G, Shtokalo D, Tackett M, Yang Z, Vyatkin Y, Milos P, et al. On the importance of small changes in RNA expression. Methods. 2013;63:18–24.CrossRefPubMed St. Laurent G, Shtokalo D, Tackett M, Yang Z, Vyatkin Y, Milos P, et al. On the importance of small changes in RNA expression. Methods. 2013;63:18–24.CrossRefPubMed
16.
go back to reference Shohet J, Foster J. Neuroblastoma. Br Med J. 2017;357:1–8. Shohet J, Foster J. Neuroblastoma. Br Med J. 2017;357:1–8.
17.
go back to reference Li R, Cheng C, Balasis ME, Liu Y, Garner TP, Daniel KG, et al. Design, synthesis, and evaluation of marinopyrrole derivatives as selective inhibitors of mcl-1 binding to pro-apoptotic Bim and dual Mcl-1/Bcl-xL inhibitors. Eur J Med Chem. 2015;90:315–31.CrossRefPubMed Li R, Cheng C, Balasis ME, Liu Y, Garner TP, Daniel KG, et al. Design, synthesis, and evaluation of marinopyrrole derivatives as selective inhibitors of mcl-1 binding to pro-apoptotic Bim and dual Mcl-1/Bcl-xL inhibitors. Eur J Med Chem. 2015;90:315–31.CrossRefPubMed
18.
go back to reference Perciavalle R, Stewart D, Koss B, Lynch J, Milasta S, Bathina M, et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol. 2012;14:575–83.CrossRefPubMedCentralPubMed Perciavalle R, Stewart D, Koss B, Lynch J, Milasta S, Bathina M, et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol. 2012;14:575–83.CrossRefPubMedCentralPubMed
19.
go back to reference Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, Goyal B, et al. MCL-1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule BCL-2 family antagonists. Cancer Biol Ther. 2009;8:1587–95.CrossRefPubMed Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, Goyal B, et al. MCL-1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule BCL-2 family antagonists. Cancer Biol Ther. 2009;8:1587–95.CrossRefPubMed
20.
go back to reference Rickman D, Schulte J, Eilers M. The expanding world of NMYC driven tumors. Cancer Discov. 2018;8:150–63.CrossRefPubMed Rickman D, Schulte J, Eilers M. The expanding world of NMYC driven tumors. Cancer Discov. 2018;8:150–63.CrossRefPubMed
21.
go back to reference Ham J, Costa C, Sano R, Lochmann T, Sennott E, Patel, et al. Exploitation of the apoptosis-primed state of MYCN-amplified neuroblastoma to develop a potent and specific targeted therapy combination. Cancer Cell. 2016;29:159–72.CrossRefPubMedCentralPubMed Ham J, Costa C, Sano R, Lochmann T, Sennott E, Patel, et al. Exploitation of the apoptosis-primed state of MYCN-amplified neuroblastoma to develop a potent and specific targeted therapy combination. Cancer Cell. 2016;29:159–72.CrossRefPubMedCentralPubMed
22.
go back to reference Felgenauer J, Tomino L, Anderson JS, Bopp E, Shah N. Dual BRD4 and AURKA inhibition is synergistic against MYCN amplified and non-amplified neuroblastoma. Neoplasia. 2018;20:965–74.CrossRef Felgenauer J, Tomino L, Anderson JS, Bopp E, Shah N. Dual BRD4 and AURKA inhibition is synergistic against MYCN amplified and non-amplified neuroblastoma. Neoplasia. 2018;20:965–74.CrossRef
23.
go back to reference Zirath H, Frenzel A, Oliynyk G, Segerstrom L, Westermark UK, Larsson K, et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. PNAS. 2013;110:10258–63.CrossRefPubMedCentralPubMed Zirath H, Frenzel A, Oliynyk G, Segerstrom L, Westermark UK, Larsson K, et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. PNAS. 2013;110:10258–63.CrossRefPubMedCentralPubMed
24.
go back to reference Cogliati S, Enriquez J, Scorrano L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci. 2016;41:261–73.CrossRefPubMed Cogliati S, Enriquez J, Scorrano L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci. 2016;41:261–73.CrossRefPubMed
25.
go back to reference Daugan M, Wojcicki A, Hayer B, Boudy V. Metformin: an anti-diabetic drug to fight cancer. Pharmacol Res. 2016;113:675685.CrossRef Daugan M, Wojcicki A, Hayer B, Boudy V. Metformin: an anti-diabetic drug to fight cancer. Pharmacol Res. 2016;113:675685.CrossRef
26.
go back to reference Zi F, Zi H, Li Y, He J, Shi Q, Cai Z. Metformin and cancer: an existing drug for cancer prevention and therapy. Oncol Lett. 2018;15:683–90.PubMed Zi F, Zi H, Li Y, He J, Shi Q, Cai Z. Metformin and cancer: an existing drug for cancer prevention and therapy. Oncol Lett. 2018;15:683–90.PubMed
27.
go back to reference Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trend Pharm Sci. 2018;39:867.CrossRef Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trend Pharm Sci. 2018;39:867.CrossRef
29.
go back to reference Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012;441:523–40.CrossRefPubMed Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J. 2012;441:523–40.CrossRefPubMed
32.
go back to reference Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997;57:1835–40.PubMed Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997;57:1835–40.PubMed
33.
go back to reference Shin H, Kwon H, Lee J, Gui X, Achek A, Kim J, et al. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53. Sci Rep. 2015;5:15798–815.CrossRefPubMedCentralPubMed Shin H, Kwon H, Lee J, Gui X, Achek A, Kim J, et al. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53. Sci Rep. 2015;5:15798–815.CrossRefPubMedCentralPubMed
34.
go back to reference Dykens J, Will Y. The significance of mitochondrial toxicity testing in drug development. Drug Dis Today. 2007;12:777–85.CrossRef Dykens J, Will Y. The significance of mitochondrial toxicity testing in drug development. Drug Dis Today. 2007;12:777–85.CrossRef
35.
go back to reference Leanza L, Romio M, Becker K, Azzolini M, Trentin L, Manago A, et al. Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo. Cancer Cell. 2017;31:516–31.CrossRefPubMed Leanza L, Romio M, Becker K, Azzolini M, Trentin L, Manago A, et al. Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo. Cancer Cell. 2017;31:516–31.CrossRefPubMed
37.
go back to reference Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–75.CrossRefPubMed Polivka J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–75.CrossRefPubMed
38.
go back to reference Vaughn L, Clarke P, Barker K, Chanthery Y, Gustafson C, Tucker E, et al. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget. 2016;7:57525–44. Vaughn L, Clarke P, Barker K, Chanthery Y, Gustafson C, Tucker E, et al. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget. 2016;7:57525–44.
39.
go back to reference Spunt S, Grupp S, Vik T, Santana V, Greenblatt D, Clancy J, et al. Phase 1 study of temsirolimus in pediatric patients with reccurent/refractory solid tumors. J Clin Oncol. 2011;29:2933–40.CrossRefPubMedCentralPubMed Spunt S, Grupp S, Vik T, Santana V, Greenblatt D, Clancy J, et al. Phase 1 study of temsirolimus in pediatric patients with reccurent/refractory solid tumors. J Clin Oncol. 2011;29:2933–40.CrossRefPubMedCentralPubMed
40.
go back to reference Geoerger B, Kieran MW, Grupp S, Perek D, Clancy J, Krygowski M, et al. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer. 2012;48:253–62.CrossRefPubMed Geoerger B, Kieran MW, Grupp S, Perek D, Clancy J, Krygowski M, et al. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer. 2012;48:253–62.CrossRefPubMed
Metadata
Title
Effects of novel pyrrolomycin MP1 in MYCN amplified chemoresistant neuroblastoma cell lines alone and combined with temsirolimus
Authors
Timothy R. McGuire
Don W. Coulter
Dachang Bai
Jason A. Sughroue
Jerry Li
Zunhua Yang
Zhen Qiao
Yan Liu
Daryl J. Murry
Yashpal S. Chhonker
Erin M. McIntyre
Gracey Alexander
John G. Sharp
Rongshi Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-6033-2

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine